A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-014-0976-x below:

Development of an Arbitrary Waveform Membrane Stretcher for Dynamic Cell Culture

Abstract

In this paper, a novel cell stretcher design that mimics the real-time stretch of the heart wall is introduced. By culturing cells under stretched conditions that mimics the mechanical aspects of the native cardiac environment, better understanding on the role of biomechanical signaling on cell development can be achieved. The device utilizes a moving magnet linear actuator controlled through pulse-width modulated power combined with an automated closed loop feedback system for accurate generation of a designated mechanical stretch profile. The system’s capability to stretch a cell culture membrane and accuracy of the designated frequency and waveform production for cyclic stretching were evaluated. Temperature and degradation assessments as well as a scalable design demonstrated the system’s cell culture application for long term, in vitro studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article Subscribe and save

Springer+ Basic

€34.99 /Month

Subscribe now Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others Explore related subjectsDiscover the latest articles and news from researchers in related subjects, suggested using machine learning. References
  1. Banes, A. J., J. Gilbert, D. Taylor, and O. Monbureau. A new vacuum-operated stress-providing instrument that applies static or variable duration cyclic tension or compression to cells in vitro. J. Cell Sci. 75:35–42, 1985.

    PubMed  CAS  Google Scholar 

  2. Bernardo, B. C., K. L. Weeks, L. Pretorius, and J. R. McMullen. Molecular distinction between physiological and pathological hypertrophy cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol. Ther. 128(1):191–227, 2010.

    Article  PubMed  CAS  Google Scholar 

  3. Brown, T. D. Techniques for mechanical stimulation of cells in vitro: a review. J. Biomech. 33:3–14, 2000.

    Article  PubMed  CAS  Google Scholar 

  4. Clark, R. E., D. S. Smith, P. H. Mellor, and D. Howe. Design optimization of moving-magnet actuators for reciprocating electro-mechanical systems. IEEE Trans. Magn. 31(6):3746–3748, 1995.

    Article  Google Scholar 

  5. Colombo, A., P. A. Cahill, and C. Lally. An analysis of the strain field in biaxial Flexcell® membranes for different waveforms and frequencies. Proc. Inst. Mech. Eng. H 222(8):1235–1245, 2008.

    Google Scholar 

  6. Dorn, II, G. W. The fuzzy logic of physiological cardiac hypertrophy. Hypertension 49:962–970, 2007.

    Article  PubMed  CAS  Google Scholar 

  7. Ellis, E. F., J. S. McKinney, K. A. Willoughby, S. Kiang, and J. T. Povlishock. A new model for rapid stretch-induced injury of cells in culture: characterization of the model using astrocytes. J. Neurotrauma 12(3):325–339, 1995.

    Article  PubMed  CAS  Google Scholar 

  8. Lee, A. A., T. Delhaas, L. K. Waldman, D. A. MacKenna, F. J. Villarreal, and A. D. McCulloch. An equibiaxial strain system for cultured cells. Am. J. Physiol. Cell Physiol. 271(4):C1400–C1408, 1996.

    CAS  Google Scholar 

  9. Leung, D. Y. M., S. Glagov, and M. B. Matthews. A new in vitro system for studying cell response to mechanical stimulation. Exp. Cell Res. 109(2):285–298, 1977.

    Article  PubMed  CAS  Google Scholar 

  10. Sculz, R. M., and A. Bader. A cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur. Biophys. J. 35:539–568, 2007.

    Google Scholar 

  11. Smith, K., S. A. Metzler, and J. N. Warnock. Cyclic strain inhibits acute pro-inflammatory gene expression in aortic valve interstitial cells. Biomech. Model. Mechanobiol. 9:117–125, 2010.

    Article  PubMed  Google Scholar 

  12. Sun, L., X. Wang, and D. L. Kaplan. A 3D cartilage—inflammatory cell culture system for the modeling of human osteoarthritis. Biomaterials 32(24):5581–5589, 2011.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Syedain, Z. H., J. S. Weinberg, and R. T. Tranquillo. Cyclic distension of fibrin-based tissue constructs: evidence of adaptation during growth of engineered connective tissue. Proc. Natl Acad. Sci. USA. 105(18):6537–6542, 2008.

    Google Scholar 

  14. Terracio, L., K. Rubin, D. Gullberg, E. Balog, W. Carver, R. Jyring, and T. K. Borg. Expression on collagen binding integrins during cardiac development and hypertrophy. Circ. Res. 68(3):734–744, 1991.

    Article  PubMed  CAS  Google Scholar 

  15. Terracio, L., A. Tingstrom, W. H. Peters, III, and T. K. Borg. A potential role for mechanical stimulation in cardiac development. Ann. N.Y. Acad. Sci. 588(1):48–60, 2006.

    Google Scholar 

  16. Thompson, M. T. Practical issues in the use of NdFeB permanent magnets in maglev, motors, bearings, and eddy current brakes. Proc. IEEE 97(11):1758–1767, 2009. doi:10.1109/JPROC.2009.2030231.

    Article  CAS  Google Scholar 

  17. Vandenburgh, H. H., and P. Karlisch. Longitudinal growth of skeletal myotubes in vitro in a new horizontal mechanical stimulator. In Vitro Cell. Dev. Biol. 25(7):607–616, 1989.

    Article  PubMed  CAS  Google Scholar 

  18. Vogel, M., D. B. McElhinney, E. Marcus, D. Morash, R. W. Jennings, and W. Tworetzky. Significance and outcome of left heart hypoplasia in fetal congenital diaphragmatic hernia. Ultrasound Obstet. Gynecol. 35(3):310–317, 2010.

    Article  PubMed  CAS  Google Scholar 

  19. Ye, K. Y., K. E. Sullivan, and L. D. Black III. Encapsulation of cardiomyocytes in a fibrin hydrogel for cardiac tissue engineering. J. Vis. Exp. 55(e3251):1–7, 2011.

Download references

Acknowledgments

This work was funded by grants from the American Heart Association (Summer Fellowship to RMW) and the NIH-NHLBI (Awards R21HL115570 and R00HL093358 to LDB).

Author information Authors and Affiliations
  1. Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA

    Jason J. Lau, Raymond M. Wang & Lauren D. Black III

  2. Cell, Developmental and Molecular Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02215, USA

    Lauren D. Black III

Authors
  1. Jason J. Lau
  2. Raymond M. Wang
  3. Lauren D. Black III
Corresponding author

Correspondence to Lauren D. Black III.

Additional information

Associate Editor Umberto Morbiducci oversaw the review of this article.

Jason J. Lau and Raymond M. Wang contributed equally to this work.

About this article Cite this article

Lau, J.J., Wang, R.M. & Black, L.D. Development of an Arbitrary Waveform Membrane Stretcher for Dynamic Cell Culture. Ann Biomed Eng 42, 1062–1073 (2014). https://doi.org/10.1007/s10439-014-0976-x

Download citation

Keywords

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4