A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-014-0973-0 below:

Architectural Trends in the Human Normal and Bicuspid Aortic Valve Leaflet and Its Relevance to Valve Disease

Abstract

The bicuspid aortic valve (AV) is the most common cardiac congenital anomaly and has been found to be a significant risk factor for developing calcific AV disease. However, the mechanisms of disease development remain unclear. In this study we quantified the structure of human normal and bicuspid leaflets in the early disease stage. From these individual leaflet maps average fiber structure maps were generated using a novel spline based technique. Interestingly, we found statistically different and consistent regional structures between the normal and bicuspid valves. The regularity in the observed microstructure was a surprising finding, especially for the pathological BAV leaflets and is an essential cornerstone of any predictive mathematical models of valve disease. In contrast, we determined that isolated valve interstitial cells from BAV leaflets show the same in vitro calcification pathways as those from the normal AV leaflets. This result suggests the VICs are not intrinsically different when isolated, and that external features, such as abnormal microstructure and altered flow may be the primary contributors in the accelerated calcification experienced by BAV patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article Subscribe and save

Springer+ Basic

€34.99 /Month

Subscribe now Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others Explore related subjectsDiscover the latest articles and news from researchers in related subjects, suggested using machine learning. Abbreviations
AV:

Aortic valve

TAV:

Tricuspid aortic valve

BAV:

Bicuspid aortic valve

AS:

Aortic stenosis

AVSc:

Aortic valve sclerosis

CAVD:

Calcific aortic valve disease

VIC:

Valve interstitial cell

AVA:

Aortic valve area

ECM:

Extra cellular matrix

SALS:

Small angle light scattering

H&E:

Hematoxylin and Eosin

MMP:

Modified Movat Pentachrome

DMEM:

Dulbecco’s modified Eagle’s medium

SMA:

Smooth muscle actin

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

RMSD:

Root mean square distance

MRI:

Magnetic resonance imaging

OI:

Orientation index

References
  1. Aggarwal, A., V. S. Aguilar, C.-H. Lee, G. Ferrari, J. H. Gorman, R. C. Gorman, and M. S. Sacks. Functional Imaging and Modeling of the Heart, Springer, 2013, pp. 141–149.

  2. Balachandran, K., P. Sucosky, and A. P. Yoganathan. Hemodynamics and mechanobiology of aortic valve inflammation and calcification. Int. J. Inflam. 2011:263870, 2011. doi:10.4061/2011/263870.

  3. Bartels, R. H., J. C. Beatty, and B. A. Barsky. An Introduction to Splines for Use in Computer Graphics and Geometric Modeling. Los Altos, CA: Morgan Kaufmann, 1987.

    Google Scholar 

  4. Branchetti, E., R. Sainger, P. Poggio, J. B. Grau, J. Patterson-Fortin, J. E. Bavaria, M. Chorny, E. Lai, R. C. Gorman, R. J. Levy, and G. Ferrari. Antioxidant enzymes reduce DNA damage and early activation of valvular interstitial cells in aortic valve sclerosis. Arterioscler. Thromb. Vasc. Biol. 33(2):e66–e74, 2013.

    Article  PubMed  CAS  Google Scholar 

  5. De Sa, M. P., E. S. Bastos, and H. Murad. Bicuspid aortic valve: theoretical and clinical aspects of concomitant ascending aorta replacement. Rev. Bras. Cir. Cardiovasc. 24(2):218–224, 2009.

    Article  PubMed  Google Scholar 

  6. Evangelista, A. Bicuspid aortic valve and aortic root disease. Curr. Cardiol. Rep. 13(3):234–241, 2011.

    Article  PubMed  Google Scholar 

  7. Fedak, P. W., S. Verma, T. E. David, R. L. Leask, R. D. Weisel, and J. Butany. Clinical and pathophysiological implications of a bicuspid aortic valve. Circulation 106:900–904, 2002.

    Article  PubMed  Google Scholar 

  8. Friedman, T., A. Mani, and J. A. Elefteriades. Bicuspid aortic valve: clinical approach and scientific review of a common clinical entity. Expert Rev. Cardiovasc. Ther. 6(2):235–248, 2008.

    Article  PubMed  Google Scholar 

  9. Garg, V. Molecular genetics of aortic valve disease. Curr. Opin. Cardiol. 21(3):180–184, 2006.

    Article  PubMed  Google Scholar 

  10. Joyce, E. M., J. Liao, F. J. Schoen, J. E. Mayer, Jr., and M. S. Sacks. Functional collagen fiber architecture of the pulmonary heart valve cusp. Ann. Thorac. Surg. 87(4):1240–1249, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Lewin, M. B., and C. M. Otto. The bicuspid aortic valve: adverse outcomes from infancy to old age. Circulation 111(7):832–834, 2005.

    Article  PubMed  Google Scholar 

  12. Mardia, K. V. Statistics of Directional Data. New York: Academic Press, 1972.

    Google Scholar 

  13. Moran, P. A. Notes on continuous stochastic phenomena. Biometrika 37(1–2):17–23, 1950.

    Article  PubMed  CAS  Google Scholar 

  14. Paradis, E., J. Claude, and K. Strimmer. APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics 20(2):289–290, 2004.

    Article  PubMed  CAS  Google Scholar 

  15. Poggio, P., R. Sainger, E. Branchetti, J. B. Grau, E. K. Lai, R. C. Gorman, M. S. Sacks, A. Parolari, J. E. Bavaria, and G. Ferrari. Noggin attenuates the osteogenic activation of human valve interstitial cells in aortic valve sclerosis. Cardiovasc. Res. 98(3):402–410, 2013.

    Article  PubMed  CAS  Google Scholar 

  16. Roberts, W. C., and J. M. Ko. Frequency by decades of unicuspid, bicuspid, and tricuspid aortic valves in adults having isolated aortic valve replacement for aortic stenosis, with or without associated aortic regurgitation. Circulation 111(7):920–925, 2005.

    Article  PubMed  Google Scholar 

  17. Robicsek, F., M. J. Thubrikar, J. W. Cook, and B. Fowler. The congenitally bicuspid aortic valve: how does it function? Why does it fail? Ann. Thorac. Surg. 77(1):177–185, 2004.

    Article  PubMed  Google Scholar 

  18. Rosenhek, R., T. Binder, G. Porenta, I. Lang, G. Christ, M. Schemper, G. Maurer, and H. Baumgartner. Predictors of outcome in severe, asymptomatic aortic stenosis. N. Engl. J. Med. 343(9):611–617, 2000.

    Article  PubMed  CAS  Google Scholar 

  19. Sacks, M. S., W. D. Merryman, and D. E. Schmidt. On the biomechanics of heart valve function. J. Biomech. 42(12):1804–1824, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Sacks, M. S., and F. J. Schoen. Collagen fiber disruption occurs independent of calcification in clinically explanted bioprosthetic heart valves. J. Biomed. Mater. Res. 62(3):359–371, 2002.

    Article  PubMed  CAS  Google Scholar 

  21. Sacks, M. S., D. B. Smith, and E. D. Hiester. A small angle light scattering device for planar connective tissue microstructural analysis. Ann. Biomed. Eng. 25(4):678–689, 1997.

    Article  PubMed  CAS  Google Scholar 

  22. Sainger, R., J. B. Grau, E. Branchetti, P. Poggio, W. F. Seefried, B. C. Field, M. A. Acker, R. C. Gorman, J. H. Gorman, 3rd, C. W. Hargrove, 3rd, J. E. Bavaria, and G. Ferrari. Human myxomatous mitral valve prolapse: role of bone morphogenetic protein 4 in valvular interstitial cell activation. J. Cell. Physiol. 227(6):2595–2604, 2012.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Schaefer, B. M., M. B. Lewin, K. K. Stout, E. Gill, A. Prueitt, P. H. Byers, and C. M. Otto. The bicuspid aortic valve: an integrated phenotypic classification of leaflet morphology and aortic root shape. Heart 94(12):1634–1638, 2008.

    Article  PubMed  CAS  Google Scholar 

  24. Siu, S. C., and C. K. Silversides. Bicuspid aortic valve disease. J. Am. Coll. Cardiol. 55(25):2789–2800, 2010.

    Article  PubMed  Google Scholar 

  25. Smith, D. B., M. S. Sacks, P. M. Pattany, and R. Schroeder. High-resolution magnetic resonance imaging to characterize the geometry of fatigued porcine bioprosthetic heart valves. J. Heart Valve Dis. 6(4):424–432, 1997.

    PubMed  CAS  Google Scholar 

  26. Sun, L., S. Chandra, and P. Sucosky. Ex vivo evidence for the contribution of hemodynamic shear stress abnormalities to the early pathogenesis of calcific bicuspid aortic valve disease. PLoS ONE 7:e48843, 2012. doi:10.1371/journal.pone.0048843

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Thornton, M. High Speed Dynamic, 3-D Surface Imaging. London, ON: Electrical Engineering, University of Western Ontario, 1996.

  28. Towler, D. A. Molecular and cellular aspects of calcific aortic valve disease. Circ. Res. 113:198–208, 2013. doi:10.1161/CIRCRESAHA.113.300155.

    Article  PubMed  CAS  Google Scholar 

  29. Yip, C. Y., and C. A. Simmons. The aortic valve microenvironment and its role in calcific aortic valve disease. Cardiovasc. Pathol. 20(3):177–182, 2011.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the following sources—National Institute of Health (grant number grant numbers HL63954, HL103723 and HL73021 to R.C.G. and J.H.G.) and Moncrief Chair funds (M.S.S.). Help from Vanessa Aguilar in carrying out several of the experiments is greatly appreciated. American Heart Association Postdoctoral Fellowship Award 14POST18720037 to A.A.

Conflict of interest

None declared.

Author information Authors and Affiliations
  1. Center for Cardiovascular Simulation, Institute for Computational Engineering Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th Street, ACES 5.438, One University Station, C0200, Austin, TX, 78712-0027, USA

    Ankush Aggarwal & Michael S. Sacks

  2. Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, PA, USA

    Giovanni Ferrari, Rachana Sainger, Joseph H. Gorman III & Robert Gorman

  3. Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA

    Erin Joyce

  4. Division of Statistics & Scientific Computation and Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA

    Michael J. Daniels

Authors
  1. Ankush Aggarwal
  2. Giovanni Ferrari
  3. Erin Joyce
  4. Michael J. Daniels
  5. Rachana Sainger
  6. Joseph H. Gorman III
  7. Robert Gorman
  8. Michael S. Sacks
Corresponding author

Correspondence to Michael S. Sacks.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

About this article Cite this article

Aggarwal, A., Ferrari, G., Joyce, E. et al. Architectural Trends in the Human Normal and Bicuspid Aortic Valve Leaflet and Its Relevance to Valve Disease. Ann Biomed Eng 42, 986–998 (2014). https://doi.org/10.1007/s10439-014-0973-0

Download citation

Keywords

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4