Abbott, J. J., K. E. Peyer, M. C. Lagomarsino, Z. Li, D. Lixin, I. K. Kaliakatsos, and B. J. Nelson. How should microrobots swim? Int. J. Robot. Res. 28:1434–1447, 2009.
Amesur, N. B., A. B. Zajko, and B. I. Carr. Chemo-embolization for unresectable hepatocellular carcinoma with different sizes of embolization particles. Dig. Dis. Sci. 53:1400–1404, 2008.
Amirfazli, A. Nanomedicine: magnetic nanoparticles hit the target. Nat. Nanotechnol. 2:467–468, 2007.
Arcese, L., M. Fruchard, and A. Ferreira. Endovascular magnetically guided robots: navigation modeling and optimization. IEEE Trans. Biomed. Eng. 59:977–987, 2012.
Basciano, C. A., C. Kleinstreuer, A. S. Kennedy, W. A. Dezarn, and E. Childress. Computer modeling of controlled microsphere release and targeting in a representative hepatic artery system. Ann. Biomed. Eng. 38:1862–1879, 2010.
Bruix, J., and J. M. Llovet. Major achievements in hepatocellular carcinoma. Lancet 373:614–616, 2009.
Carlisle, K. M., M. Halliwell, A. E. Read, and P. N. Wells. Estimation of total hepatic blood flow by duplex ultrasound. Gut 33:92–97, 1992.
Chanu, A., O. Felfoul, G. Beaudoin, and S. Martel. Adapting the clinical MRI software environment for real-time navigation of an endovascular untethered ferromagnetic bead for future endovascular interventions. Magn. Reson. Med. 59:1287–1297, 2008.
Chorny, M., I. Fishbein, B. B. Yellen, I. S. Alferiev, M. Bakay, S. Ganta, R. Adamo, M. Amiji, G. Friedman, and R. J. Levy. Targeting stents with local delivery of paclitaxel-loaded magnetic nanoparticles using uniform fields. Proc. Natl Acad. Sci. U.S.A. 107:8346–8351, 2010.
Dames, P., B. Gleich, A. Flemmer, K. Hajek, N. Seidl, F. Wiekhorst, D. Eberbeck, I. Bittmann, C. Bergemann, T. Weyh, L. Trahms, J. Rosenecker, and C. Rudolph. Targeted delivery of magnetic aerosol droplets to the lung. Nat. Nanotechnol. 2:495–499, 2007.
Darton, N. J., A. J. Sederman, A. Ionescu, C. Ducati, R. C. Darton, L. F. Gladden, and N. K. H. Slater. Manipulation and tracking of superparamagnetic nanoparticles using MRI. Nanotechnology 19:395102, 2008.
Di Bisceglie, A. M. Epidemiology and clinical presentation of hepatocellular carcinoma. J. Vasc. Interv. Radiol. 13:S169–S171, 2002.
Dobson, J. Cancer therapy: a twist on tumour targeting. Nat. Mater. 9:95–96, 2010.
Felfoul, O., J. B. Mathieu, G. Beaudoin, and S. Martel. In vivo MR-tracking based on magnetic signature selective excitation. IEEE Trans. Med. Imaging 27:28–35, 2008.
Frutiger, D. R., K. Vollmers, B. E. Kratochvil, and B. J. Nelson. Small, fast, and under control: wireless resonant magnetic micro-agents. Int. J. Robot. Res. 29:613–636, 2010.
Gosselin, F. P., V. Lalande, and S. Martel. Characterization of the deflections of a catheter steered using a magnetic resonance imaging system. Med. Phys. 38:4994–5002, 2011.
Jakab, F., Z. Rath, F. Schmal, P. Nagy, and J. Faller. Changes in hepatic hemodynamics due to primary liver tumours. HPB Surg. 9:245–248, 1996.
Jakab, F., Z. Rath, F. Schmal, P. Nagy, and J. Faller. A new method to measure portal venous and hepatic arterial blood flow in patients intraoperatively. HPB Surg. 9:239–243, 1996.
Konya, A., K. C. Wright, I. A. Szwarc, and R. D. Collins. Technical aspects of catheter-related interventions in the liver of the rabbit. Acta Radiol. 38:332–334, 1997.
Kósa, G., P. Jakab, G. Székely, and N. Hata. MRI driven magnetic microswimmers. Biomed. Microdevices 14:165–178, 2012.
Lencioni, R., T. de Baere, M. Burrel, J. G. Caridi, J. Lammer, K. Malagari, R. C. Martin, E. O’Grady, M. I. Real, T. J. Vogl, A. Watkinson, and J. F. Geschwind. Transcatheter treatment of hepatocellular carcinoma with doxorubicin-loaded DC bead (DEBDOX): technical recommendations. Cardiovasc. Interv. Radiol. 35:980–985, 2011.
Liapi, E., and J. F. Geschwind. Transcatheter and ablative therapeutic approaches for solid malignancies. J. Clin. Oncol. 25:978–986, 2007.
Lin, R., L. Shi Ng, and C. H. Wang. In vitro study of anticancer drug doxorubicin in PLGA-based microparticles. Biomaterials 26:4476–4485, 2005.
Lubbe, A. S., C. Bergemann, H. Riess, F. Schriever, P. Reichardt, K. Possinger, M. Matthias, B. Dorken, F. Herrmann, R. Gurtler, P. Hohenberger, N. Haas, R. Sohr, B. Sander, A. J. Lemke, D. Ohlendorf, W. Huhnt, and D. Huhn. Clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res. 56:4686–4693, 1996.
Martel, S. Combining pulsed and DC gradients in a clinical MRI-based microrobotic platform to guide therapeutic magnetic agents in the vascular network. Int. J. Robot. Res. 10:7, 2012.
Martel, S., O. Felfoul, J. B. Mathieu, A. Chanu, S. Tamaz, M. Mohammadi, M. Mankiewicz, and N. Tabatabaei. MRI-based medical nanorobotic platform for the control of magnetic nanoparticles and flagellated bacteria for target interventions in human capillaries. Int. J. Robot. Res. 28:1169–1182, 2009.
Martel, S., J. B. Mathieu, O. Felfoul, A. Chanu, E. Aboussouan, S. Tamaz, P. Pouponneau, L. Yahia, G. Beaudoin, G. Soulez, and M. Mankiewicz. Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system. Appl. Phys. Lett. 90:114105, 2007.
Martel, S., J. B. Mathieu, O. Felfoul, A. Chanu, E. Aboussouan, S. Tamaz, P. Pouponneau, L. Yahia, G. Beaudoin, G. Soulez, and M. Mankiewicz. A computer-assisted protocol for endovascular target interventions using a clinical MRI system for controlling untethered microdevices and future nanorobots. Comput. Aided Surg. 13:340–352, 2008.
Mathieu, J. B., and S. Martel. Steering of aggregating magnetic microparticles using propulsion gradients coils in an MRI Scanner. Magn. Reson. Med. 63:1336–1345, 2010.
Nacev, A., A. Komaee, A. Sarwar, R. Probst, S. H. Kim, M. Emmert-Buck, and B. Shapiro. Towards control of magnetic fluids in patients: directing therapeutic nanoparticles to disease locations. IEEE Contr. Syst. Mag. 32:43, 2012.
Namiki, Y., T. Namiki, H. Yoshida, Y. Ishii, A. Tsubota, S. Koido, K. Nariai, M. Mitsunaga, S. Yanagisawa, H. Kashiwagi, Y. Mabashi, Y. Yumoto, S. Hoshina, K. Fujise, and N. Tada. A novel magnetic crystal-lipid nanostructure for magnetically guided in vivo gene delivery. Nat. Nanotechnol. 4:598–606, 2009.
Namur, J., M. Wassef, J. M. Millot, A. L. Lewis, M. Manfait, and A. Laurent. Drug-eluting beads for liver embolization: concentration of doxorubicin in tissue and in beads in a pig model. J. Vasc. Interv. Radiol. 21:259–267, 2010.
Nelson, B. J., I. K. Kaliakatsos, and J. J. Abbott. Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12:55–85, 2010.
Noar, J. H., R. D. Evans, D. Wilson, J. Costello, E. Ioannou, A. Ayeni, N. J. Mordan, M. Wilson, and J. Pratten. An in vitro study into the corrosion of intra-oral magnets in the presence of dental amalgam. Eur. J. Orthod. 25:615–619, 2003.
Park, S., K. Cha, and J. Park. Development of biomedical microrobot for intravascular therapy. Int. J. Robot. Res. 7:97–98, 2010.
Plank, C. Nanomedicine: silence the target. Nat. Nanotechnol. 4:544–545, 2009.
Polyak, B., I. Fishbein, M. Chorny, I. Alferiev, D. Williams, B. Yellen, G. Friedman, and R. J. Levy. High field gradient targeting of magnetic nanoparticle-loaded endothelial cells to the surfaces of steel stents. Proc. Natl Acad. Sci. U.S.A. 105:698–703, 2008.
Pouponneau, P., J. C. Leroux, and S. Martel. Magnetic nanoparticles encapsulated into biodegradable microparticles steered with an upgraded magnetic resonance imaging system for tumor chemoembolization. Biomaterials 30:6327–6332, 2009.
Pouponneau, P., J. C. Leroux, G. Soulez, L. Gaboury, and S. Martel. Co-encapsulation of magnetic nanoparticles and doxorubicin into biodegradable microcarriers for deep tissue targeting by vascular MRI navigation. Biomaterials 32:3481–3486, 2011.
Pouponneau, P., O. Savadogo, T. Napporn, L. Yahia, and S. Martel. Corrosion study of iron-cobalt alloys for MRI-based propulsion embedded in untethered microdevices operating in the vascular network. J. Biomed. Mater. Res. B 93:203–211, 2010.
Pouponneau, P., O. Savadogo, T. Napporn, L. Yahia, and S. Martel. Corrosion study of single crystal Ni-Mn-Ga alloy and Tb0.27Dy0.73Fe1.95 alloy for the design of new medical microdevices. J. Mater. Sci. Mater. Med. 22:237–245, 2011.
Pouponneau, P., V. Segura, O. Savadogo, J.-C. Leroux, and S. Martel. Annealing of magnetic nanoparticles for their encapsulation into microcarriers guided by vascular magnetic resonance navigation. J. Nanopart. Res. 14:1–13, 2012.
Pouponneau, P., G. Soulez, G. Beaudoin, J. C. Leroux, and S. Martel. MR imaging of therapeutic magnetic microcarriers guided by magnetic resonance navigation for targeted liver chemoembolization. Cardiovasc. Interv. Radiol. DOI:10.1007/s00270-013-0770-4, 2013.
Reyes, D. K., J. A. Vossen, I. R. Kamel, N. S. Azad, T. A. Wahlin, Torbenson, MS, M. A. Choti, and J. F. Geschwind. Single-center phase II trial of transarterial chemoembolization with drug-eluting beads for patients with unresectable hepatocellular carcinoma: initial experience in the United States. Cancer J. 15:526–532, 2009.
Riegler, J., J. A. Wells, P. G. Kyrtatos, A. N. Price, Q. A. Pankhurst, and M. F. Lythgoe. Targeted magnetic delivery and tracking of cells using a magnetic resonance imaging system. Biomaterials 31:5366–5371, 2010.
Silveira, L. A., F. B. Silveira, and V. P. Fazan. Arterial diameter of the celiac trunk and its branches. Anatomical study. Acta Cir. Bras. 24:43–47, 2009.
Tamaz, S., R. Gourdeau, A. Chanu, J. B. Mathieu, and S. Martel. Real-time MRI-based control of a ferromagnetic core for endovascular navigation. IEEE Trans. Biomed. Eng. 55:1854–1863, 2008.
Vartholomeos, P., and C. Mavroidis. In silico studies of magnetic microparticle aggregations in fluid environments for MRI-guided drug delivery. IEEE Trans. Biomed. Eng. 59:3028–3038, 2012.
Yesin, K. B., K. Vollmers, and B. J. Nelson. Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic fields. Int. J. Robot. Res. 25:527–536, 2006.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4