A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-014-0972-1 below:

Therapeutic Magnetic Microcarriers Guided by Magnetic Resonance Navigation for Enhanced Liver Chemoembilization: A Design Review

References
  1. Abbott, J. J., K. E. Peyer, M. C. Lagomarsino, Z. Li, D. Lixin, I. K. Kaliakatsos, and B. J. Nelson. How should microrobots swim? Int. J. Robot. Res. 28:1434–1447, 2009.

    Article  Google Scholar 

  2. Amesur, N. B., A. B. Zajko, and B. I. Carr. Chemo-embolization for unresectable hepatocellular carcinoma with different sizes of embolization particles. Dig. Dis. Sci. 53:1400–1404, 2008.

    Article  PubMed  Google Scholar 

  3. Amirfazli, A. Nanomedicine: magnetic nanoparticles hit the target. Nat. Nanotechnol. 2:467–468, 2007.

    Article  PubMed  CAS  Google Scholar 

  4. Arcese, L., M. Fruchard, and A. Ferreira. Endovascular magnetically guided robots: navigation modeling and optimization. IEEE Trans. Biomed. Eng. 59:977–987, 2012.

    Article  PubMed  Google Scholar 

  5. Basciano, C. A., C. Kleinstreuer, A. S. Kennedy, W. A. Dezarn, and E. Childress. Computer modeling of controlled microsphere release and targeting in a representative hepatic artery system. Ann. Biomed. Eng. 38:1862–1879, 2010.

    Article  PubMed  Google Scholar 

  6. Bruix, J., and J. M. Llovet. Major achievements in hepatocellular carcinoma. Lancet 373:614–616, 2009.

    Article  PubMed  Google Scholar 

  7. Carlisle, K. M., M. Halliwell, A. E. Read, and P. N. Wells. Estimation of total hepatic blood flow by duplex ultrasound. Gut 33:92–97, 1992.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Chanu, A., O. Felfoul, G. Beaudoin, and S. Martel. Adapting the clinical MRI software environment for real-time navigation of an endovascular untethered ferromagnetic bead for future endovascular interventions. Magn. Reson. Med. 59:1287–1297, 2008.

    Article  PubMed  Google Scholar 

  9. Chorny, M., I. Fishbein, B. B. Yellen, I. S. Alferiev, M. Bakay, S. Ganta, R. Adamo, M. Amiji, G. Friedman, and R. J. Levy. Targeting stents with local delivery of paclitaxel-loaded magnetic nanoparticles using uniform fields. Proc. Natl Acad. Sci. U.S.A. 107:8346–8351, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Dames, P., B. Gleich, A. Flemmer, K. Hajek, N. Seidl, F. Wiekhorst, D. Eberbeck, I. Bittmann, C. Bergemann, T. Weyh, L. Trahms, J. Rosenecker, and C. Rudolph. Targeted delivery of magnetic aerosol droplets to the lung. Nat. Nanotechnol. 2:495–499, 2007.

    Article  PubMed  Google Scholar 

  11. Darton, N. J., A. J. Sederman, A. Ionescu, C. Ducati, R. C. Darton, L. F. Gladden, and N. K. H. Slater. Manipulation and tracking of superparamagnetic nanoparticles using MRI. Nanotechnology 19:395102, 2008.

    Article  PubMed  CAS  Google Scholar 

  12. Di Bisceglie, A. M. Epidemiology and clinical presentation of hepatocellular carcinoma. J. Vasc. Interv. Radiol. 13:S169–S171, 2002.

    Article  PubMed  Google Scholar 

  13. Dobson, J. Cancer therapy: a twist on tumour targeting. Nat. Mater. 9:95–96, 2010.

    Article  PubMed  CAS  Google Scholar 

  14. Felfoul, O., J. B. Mathieu, G. Beaudoin, and S. Martel. In vivo MR-tracking based on magnetic signature selective excitation. IEEE Trans. Med. Imaging 27:28–35, 2008.

    Article  PubMed  CAS  Google Scholar 

  15. Frutiger, D. R., K. Vollmers, B. E. Kratochvil, and B. J. Nelson. Small, fast, and under control: wireless resonant magnetic micro-agents. Int. J. Robot. Res. 29:613–636, 2010.

    Article  Google Scholar 

  16. Gosselin, F. P., V. Lalande, and S. Martel. Characterization of the deflections of a catheter steered using a magnetic resonance imaging system. Med. Phys. 38:4994–5002, 2011.

    Article  PubMed  Google Scholar 

  17. Jakab, F., Z. Rath, F. Schmal, P. Nagy, and J. Faller. Changes in hepatic hemodynamics due to primary liver tumours. HPB Surg. 9:245–248, 1996.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Jakab, F., Z. Rath, F. Schmal, P. Nagy, and J. Faller. A new method to measure portal venous and hepatic arterial blood flow in patients intraoperatively. HPB Surg. 9:239–243, 1996.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Konya, A., K. C. Wright, I. A. Szwarc, and R. D. Collins. Technical aspects of catheter-related interventions in the liver of the rabbit. Acta Radiol. 38:332–334, 1997.

    Article  PubMed  CAS  Google Scholar 

  20. Kósa, G., P. Jakab, G. Székely, and N. Hata. MRI driven magnetic microswimmers. Biomed. Microdevices 14:165–178, 2012.

    Article  PubMed  Google Scholar 

  21. Lencioni, R., T. de Baere, M. Burrel, J. G. Caridi, J. Lammer, K. Malagari, R. C. Martin, E. O’Grady, M. I. Real, T. J. Vogl, A. Watkinson, and J. F. Geschwind. Transcatheter treatment of hepatocellular carcinoma with doxorubicin-loaded DC bead (DEBDOX): technical recommendations. Cardiovasc. Interv. Radiol. 35:980–985, 2011.

    Article  Google Scholar 

  22. Liapi, E., and J. F. Geschwind. Transcatheter and ablative therapeutic approaches for solid malignancies. J. Clin. Oncol. 25:978–986, 2007.

    Article  PubMed  Google Scholar 

  23. Lin, R., L. Shi Ng, and C. H. Wang. In vitro study of anticancer drug doxorubicin in PLGA-based microparticles. Biomaterials 26:4476–4485, 2005.

    Article  PubMed  CAS  Google Scholar 

  24. Lubbe, A. S., C. Bergemann, H. Riess, F. Schriever, P. Reichardt, K. Possinger, M. Matthias, B. Dorken, F. Herrmann, R. Gurtler, P. Hohenberger, N. Haas, R. Sohr, B. Sander, A. J. Lemke, D. Ohlendorf, W. Huhnt, and D. Huhn. Clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res. 56:4686–4693, 1996.

    PubMed  CAS  Google Scholar 

  25. Martel, S. Combining pulsed and DC gradients in a clinical MRI-based microrobotic platform to guide therapeutic magnetic agents in the vascular network. Int. J. Robot. Res. 10:7, 2012.

    Google Scholar 

  26. Martel, S., O. Felfoul, J. B. Mathieu, A. Chanu, S. Tamaz, M. Mohammadi, M. Mankiewicz, and N. Tabatabaei. MRI-based medical nanorobotic platform for the control of magnetic nanoparticles and flagellated bacteria for target interventions in human capillaries. Int. J. Robot. Res. 28:1169–1182, 2009.

    Article  Google Scholar 

  27. Martel, S., J. B. Mathieu, O. Felfoul, A. Chanu, E. Aboussouan, S. Tamaz, P. Pouponneau, L. Yahia, G. Beaudoin, G. Soulez, and M. Mankiewicz. Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system. Appl. Phys. Lett. 90:114105, 2007.

    Article  CAS  Google Scholar 

  28. Martel, S., J. B. Mathieu, O. Felfoul, A. Chanu, E. Aboussouan, S. Tamaz, P. Pouponneau, L. Yahia, G. Beaudoin, G. Soulez, and M. Mankiewicz. A computer-assisted protocol for endovascular target interventions using a clinical MRI system for controlling untethered microdevices and future nanorobots. Comput. Aided Surg. 13:340–352, 2008.

    Article  PubMed  Google Scholar 

  29. Mathieu, J. B., and S. Martel. Steering of aggregating magnetic microparticles using propulsion gradients coils in an MRI Scanner. Magn. Reson. Med. 63:1336–1345, 2010.

    Article  PubMed  Google Scholar 

  30. Nacev, A., A. Komaee, A. Sarwar, R. Probst, S. H. Kim, M. Emmert-Buck, and B. Shapiro. Towards control of magnetic fluids in patients: directing therapeutic nanoparticles to disease locations. IEEE Contr. Syst. Mag. 32:43, 2012.

    Article  Google Scholar 

  31. Namiki, Y., T. Namiki, H. Yoshida, Y. Ishii, A. Tsubota, S. Koido, K. Nariai, M. Mitsunaga, S. Yanagisawa, H. Kashiwagi, Y. Mabashi, Y. Yumoto, S. Hoshina, K. Fujise, and N. Tada. A novel magnetic crystal-lipid nanostructure for magnetically guided in vivo gene delivery. Nat. Nanotechnol. 4:598–606, 2009.

    Article  PubMed  CAS  Google Scholar 

  32. Namur, J., M. Wassef, J. M. Millot, A. L. Lewis, M. Manfait, and A. Laurent. Drug-eluting beads for liver embolization: concentration of doxorubicin in tissue and in beads in a pig model. J. Vasc. Interv. Radiol. 21:259–267, 2010.

    Article  PubMed  Google Scholar 

  33. Nelson, B. J., I. K. Kaliakatsos, and J. J. Abbott. Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12:55–85, 2010.

    Article  PubMed  CAS  Google Scholar 

  34. Noar, J. H., R. D. Evans, D. Wilson, J. Costello, E. Ioannou, A. Ayeni, N. J. Mordan, M. Wilson, and J. Pratten. An in vitro study into the corrosion of intra-oral magnets in the presence of dental amalgam. Eur. J. Orthod. 25:615–619, 2003.

    Article  PubMed  Google Scholar 

  35. Park, S., K. Cha, and J. Park. Development of biomedical microrobot for intravascular therapy. Int. J. Robot. Res. 7:97–98, 2010.

    Google Scholar 

  36. Plank, C. Nanomedicine: silence the target. Nat. Nanotechnol. 4:544–545, 2009.

    Article  PubMed  CAS  Google Scholar 

  37. Polyak, B., I. Fishbein, M. Chorny, I. Alferiev, D. Williams, B. Yellen, G. Friedman, and R. J. Levy. High field gradient targeting of magnetic nanoparticle-loaded endothelial cells to the surfaces of steel stents. Proc. Natl Acad. Sci. U.S.A. 105:698–703, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Pouponneau, P., J. C. Leroux, and S. Martel. Magnetic nanoparticles encapsulated into biodegradable microparticles steered with an upgraded magnetic resonance imaging system for tumor chemoembolization. Biomaterials 30:6327–6332, 2009.

    Article  PubMed  CAS  Google Scholar 

  39. Pouponneau, P., J. C. Leroux, G. Soulez, L. Gaboury, and S. Martel. Co-encapsulation of magnetic nanoparticles and doxorubicin into biodegradable microcarriers for deep tissue targeting by vascular MRI navigation. Biomaterials 32:3481–3486, 2011.

    Article  PubMed  CAS  Google Scholar 

  40. Pouponneau, P., O. Savadogo, T. Napporn, L. Yahia, and S. Martel. Corrosion study of iron-cobalt alloys for MRI-based propulsion embedded in untethered microdevices operating in the vascular network. J. Biomed. Mater. Res. B 93:203–211, 2010.

    Google Scholar 

  41. Pouponneau, P., O. Savadogo, T. Napporn, L. Yahia, and S. Martel. Corrosion study of single crystal Ni-Mn-Ga alloy and Tb0.27Dy0.73Fe1.95 alloy for the design of new medical microdevices. J. Mater. Sci. Mater. Med. 22:237–245, 2011.

    Article  PubMed  CAS  Google Scholar 

  42. Pouponneau, P., V. Segura, O. Savadogo, J.-C. Leroux, and S. Martel. Annealing of magnetic nanoparticles for their encapsulation into microcarriers guided by vascular magnetic resonance navigation. J. Nanopart. Res. 14:1–13, 2012.

    Article  Google Scholar 

  43. Pouponneau, P., G. Soulez, G. Beaudoin, J. C. Leroux, and S. Martel. MR imaging of therapeutic magnetic microcarriers guided by magnetic resonance navigation for targeted liver chemoembolization. Cardiovasc. Interv. Radiol. DOI:10.1007/s00270-013-0770-4, 2013.

  44. Reyes, D. K., J. A. Vossen, I. R. Kamel, N. S. Azad, T. A. Wahlin, Torbenson, MS, M. A. Choti, and J. F. Geschwind. Single-center phase II trial of transarterial chemoembolization with drug-eluting beads for patients with unresectable hepatocellular carcinoma: initial experience in the United States. Cancer J. 15:526–532, 2009.

    Article  PubMed  CAS  Google Scholar 

  45. Riegler, J., J. A. Wells, P. G. Kyrtatos, A. N. Price, Q. A. Pankhurst, and M. F. Lythgoe. Targeted magnetic delivery and tracking of cells using a magnetic resonance imaging system. Biomaterials 31:5366–5371, 2010.

    Article  PubMed  CAS  Google Scholar 

  46. Silveira, L. A., F. B. Silveira, and V. P. Fazan. Arterial diameter of the celiac trunk and its branches. Anatomical study. Acta Cir. Bras. 24:43–47, 2009.

    Article  PubMed  Google Scholar 

  47. Tamaz, S., R. Gourdeau, A. Chanu, J. B. Mathieu, and S. Martel. Real-time MRI-based control of a ferromagnetic core for endovascular navigation. IEEE Trans. Biomed. Eng. 55:1854–1863, 2008.

    Article  PubMed  Google Scholar 

  48. Vartholomeos, P., and C. Mavroidis. In silico studies of magnetic microparticle aggregations in fluid environments for MRI-guided drug delivery. IEEE Trans. Biomed. Eng. 59:3028–3038, 2012.

    Article  PubMed  Google Scholar 

  49. Yesin, K. B., K. Vollmers, and B. J. Nelson. Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic fields. Int. J. Robot. Res. 25:527–536, 2006.

    Article  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4