Alastruey, J., A. W. Khir, K. S. Matthys, P. Segers, S. J. Sherwin, P. R. Verdonck, K. H. Parker, and J. Peiró. Pulse wave propagation in a model human arterial network: assessment of 1-D visco-elastic simulations against in vitro measurements. J. Biomech. 44:2250–2258, 2011.
Atanacković, T. M., S. Konjik, L. Oparnica, and D. Zorica. Thermodynamical restrictions and wave propagation for a class of fractional order viscoelastic rods. Abstr. Appl. Anal. 2011:1–32, 2011.
Bia, D., I. Aguirre, Y. Zócalo, L. Devera, E. Cabrera Fischer, and R. L. Armentano. Regional differences in viscosity, elasticity, and wall buffering function in systemic arteries: pulse wave analysis of the arterial pressure–diameter relationship. Rev. Esp. Cardiol. (Engl. Ed.) 58:167–174, 2005.
Čanić, S., C. J. Hartley, D. Rosenstrauch, J. Tambača, G. Guidoboni, and A. Mikelić. Blood flow in compliant arteries: an effective viscoelastic reduced model, numerics, and experimental validation. Ann. Biomed. Eng. 34(4):575–592, 2006.
Craiem, D. O., and R. L. Armentano. A fractional derivative model to describe arterial viscoelasticity. Biorheology 44:251–263, 2007.
Craiem, D. O., F. J. Rojo, J. M. Atienza, R. L. Armentano, and G. V. Guinea. Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries. Phys. Med. Biol. 53:4543, 2008.
Craiem, D. O., F. J. Rojo, J. M. Atienza, G. V. Guinea, and R. L. Armentano. Fractional calculus applied to model arterial viscoelasticity. Latin Am. Appl. Res. 38:141–145, 2008.
DeVault, K., P. A. Gremaud, V. Novak, M. S. Olufsen, G. Vernieres, and P. Zhao. Blood flow in the circle of willis: modeling and calibration. SIAM Multiscale Model. Simul. 7(2):888–909, 2008.
Doehring, T. C., A. D. Freed, E. O. Carew, I. Vesely, et al. Fractional order viscoelasticity of the aortic valve cusp: an alternative to quasilinear viscoelasticity. J. Biomech. Eng.-Trans. ASME 127:700, 2005.
Eringen, A. C. Mechanics of Continua. Huntington, NY: Robert E. Krieger, 1980.
Formaggia, L., A. Quarteroni, and A. Veneziani. Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System, Vol. 1. New York: Springer, 2009.
Fung, Y. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer, 1993.
Grinberg, L., E. Cheever, T. Anor, J. R. Madsen, and G. E. Karniadakis. Modeling blood flow circulation in intracranial arterial networks: a comparative 3D/1D simulation study. Ann. Biomed. Eng. 39:297–309, 2011.
López-Fernández, M., C. Lubich, and A. Schädle. Adaptive, fast, and oblivious convolution in evolution equations with memory. SIAM J. Sci. Comput. 30:1015–1037, 2008.
Lubich, C., and A. Schädle. Fast convolution for nonreflecting boundary conditions. SIAM J. Sci. Comput. 24:161–182, 2002.
Lundkvist, A., E. Lilleodden, W. Siekhaus, J. Kinney, L. Pruitt, and M. Balooch. Viscoelastic properties of healthy human artery measured in saline solution by AFM-based indentation technique. In: MRS Proceedings, Vol. 436, 1996.
Magin, R. L. Fractional Calculus in Bioengineering. Redding: Begell House, 2006.
Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. London: Imperial College Press, 2010.
Näsholm, S. P., and S. Holm. On a fractional Zener elastic wave equation. Fract. Calc. Appl. Anal. 16:26–50, 2013.
Podlubny, I. Fractional Differential Equations, Vol. 198. San Diego: Academic Press, 1998.
Podlubny, I. Calculation of the Mittag-Leffler function with desired accuracy. http://www.mathworks.com/matlabcentral/fileexchange/8738-mittag-leffler-function, 2012. Accessed 12 September 2012.
Raghu, R., I. E. Vignon-Clementel, C. A. Figueroa, and C. A. Taylor. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow. J. Biomech. Eng.-Trans. ASME 133(8):081003–081003, 2011.
Reymond, P., F. Merenda, F. Perren, D. Rüfenacht, and N. Stergiopulos. Validation of a one-dimensional model of the systemic arterial tree. Am. J. Physiol. Heart Circ. Physiol. 297:208, 2009.
Reymond, P., F. Perren, F. Lazeyras, and N. Stergiopulos. Patient-specific mean pressure drop in the systemic arterial tree, a comparison between 1-D and 3-D models. J. Biomech. 45(15):2499–2505, 2012.
Sherwin, S. J., V. Franke, J. Peiro, and K. H. Parker. One-dimensional modelling of a vascular network in space–time variables. J. Eng. Math. 47:217–250, 2012.
Shu, C. W. Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9(6):1073–1084, 1988.
Smith, N. P., A. J. Pullan, and P. J. Hunter. An anatomically based model of transient coronary blood flow in the heart. SIAM J. Appl. Math. 62:990–1018, 2001.
Steele, B. N., D. Valdez-Jasso, M. A. Haider, and M. S. Olufsen. Predicting arterial flow and pressure dynamics using a 1D fluid dynamics model with a viscoelastic wall. SIAM J. Appl. Math. 71(4):1123–1143, 2011.
Valdez-Jasso, D., D. Bia, Y. Zócalo, R. L. Armentano, M. Haider, and M. Olufsen. Linear and nonlinear viscoelastic modeling of aorta and carotid pressure–area dynamics under in vivo and ex vivo conditions. Ann. Biomed. Eng. 39(5):1–19, 2011.
Witthoft, A., and G. E. Karniadakis. A bidirectional model for communication in the neurovascular unit. J. Theor. Biol. 311:80–93, 2012.
Xiu, D., and D. E. Karniadakis. The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24:619–644, 2002.
Yang, X., M. Choi, G. Lin, and G. E. Karniadakis. Adaptive anova decomposition of stochastic incompressible and compressible flows. J. Comput. Phys. 231:1587–1614, 2012.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4