Bousseljot, R., D. Kreiseler, and A. Schnabel. Nutzung der EKG-Signaldatenbank CARDIODAT der PTB uber das Internet. Biomed. Tech. 40(1):317–318, 1995.
Cholleti, S. R., S. A. Goldman, A. Blum, D. G. Politte, and S. Don. Veritas: combining expert opinions without labeled data. In: Proceedings of 20th IEEE International Conference on Tools with Artificial Intelligence, Vol. 1, 2008, pp. 45–52.
Christov, I., I. Dotsinsky, I. Simova, R. Prokopova, E. Trendafilova, and S. Naydenov. Dataset of manually measured QT intervals in the electrocardiogram. Biomed. Eng. Online 5:31, 2006.
Clifford, G. D., F. Azuaje, and P. E. McSharry. Advanced Methods and Tools for ECG Analysis. Engineering in Medicine and Biology. Norwood, MA: Artech House, 2006.
Clifford, G. D., J. Behar, Q. Li, and I. Rezek. Signal quality indices and data fusion for determining clinical acceptability of electrocardiograms. Physiol. Meas. 33(9):1419–1433, 2012.
Clifford, G. D., and M. C. Villarroel. Model-based determination of QT intervals. Comput. Cardiol. 33:357–360, 2006.
Dawid, A. P., and A. M. Skene. Maximum likelihood estimation of observer error-rates using the EM algorithm. J. R. Stat. Soc. Ser. C Appl. Stat. 28(1):20–28, 1979.
Dempster, A. P., N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39(1):1–38, 1977.
Ehlert, F. A., J. J. Goldberger, J. E. Rosenthal, and A. H. Kadish. Relation between QT and RR intervals during exercise testing in atrial fibrillation. Am. J. Cardiol. 70(3):332–338, 1992.
Franz, M. R., and M. Zabel. Electrophysiological basis of QT dispersion measurements. Prog. Cardiovasc. Dis. 42(5):311–324, 2000.
Friesen, G. M., T. C. Jannett, M. A. Jadallah, S. L. Yates, S. R. Quint, and H. T. Nagle. A comparison of the noise sensitivity of nine QRS detection algorithms. IEEE Trans. Biomed. Eng. 37(1):85–98, 1990.
Hamilton, P. S., and W. J. Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmia database. IEEE Trans. Biomed. Eng. 33(12):1157–1165, 1986.
International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use: Guidance for Industry E14: Clinical Evaluation of QT/ QTc Interval Prolongation and Proarrhythmic Potential for Non-Antiarrhythmic Drugs. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm073153.pdf.
Jarque, C. M., and A. K. Bera. A test for normality of observations and regression residuals. Int. Stat. Rev. 55(2):163–172, 1987.
Jin, R., and Z. Ghahramani. Learning with multiple labels. In: Advances in Neural Information Processing Systems, Vol. 15, edited by S. Becker, S. Thrun, and K. Obermayer. Cambridge: MIT Press, 2003, pp. 897–904.
Malik, M. Errors and misconceptions in ECG measurement used for the detection of drug induced QT interval prolongation. J. Electrocardiol. 37(Supplement):25–33, 2004.
Moody, G. B., H. Koch, and U. Steinhoff. The Physio Net/Computers in Cardiology Challenge 2006: QT interval measurement. In: Computers in Cardiology, 2006, pp. 313–316.
Ofer Dekel, O. S. Good learners for evil teachers. In: Proceedings of 26th International Conference on Machine Learning, 2009.
Pueyo, E., P. Smetana, P. Laguna, and M. Malik. Estimation of the QT/RR hysteresis lag. J. Electrocardiol. 36: 187–190, 2003.
Raykar, V. C., S. Yu, L. H. Zhao, G. H. Valadez, C. Florin, L. Bogoni, L. Moy, and D. Blei. Learning from crowds. J. Mach. Learn. Res. 11:1297–1322, 2010.
Salerno, S. M., P. C. Alguire, and H. S. Waxman. Competency in interpretation of 12-lead electrocardiograms: a summary and appraisal of published evidence. Ann. Intern. Med. 138(9):751–760, 2003.
Viskin, S., U. Rosovski, A. J. Sands, E. Chen, P. M. Kistler, J. M. Kalman, L. Rodriguez Chavez, P. Iturralde Torres, F. E. S. Cruz F, O. A. Centurin, A. Fujiki, P. Maury, X. Chen, A. D. Krahn, F. Roithinger, L. Zhang, G. M. Vincent, and D. Zeltser. Inaccurate electrocardiographic interpretation of long QT: the majority of physicians cannot recognize a long QT when they see one. Heart Rhythm 2:569–574, 2005.
Warfield, S. K., K. H. Zou, and W. M. Wells. Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans. Med. Imaging 23(7):903–921, 2004.
Warfield, S. K., K. H. Zou, and W. M. Wells. Validation of image segmentation by estimating rater bias and variance. Philos. Trans. A Math. Phys. Eng. Sci. 366:2361–2375, 2008.
Willems, J., P. Arnaud, J. van Bemmel, P. Bourdillon, C. Brohet, S. Dalla Volta, J. Andersen, R. Degani, B. Denis, M. Demeester, et al. Assessment of the performance of electrocardiographic computer programs with the use of a reference data base. Circulation 71(3):523–534, 1985.
Zong, W., G. Moody, and D. Jiang. A robust open-source algorithm to detect onset and duration of QRS complexes. Comput. Cardiol. 30:737–740, 2003.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4