Abbitt, K. B., and G. B. Nash. Rheological properties of the blood influencing selectin-mediated adhesion of flowing leukocytes. Am. J. Physiol. 285:H229–H240, 2003.
Abkarian, M., M. Faivre, and A. Viallat. Swinging of red blood cells under shear flow. Phys. Rev. Lett. 98:188302, 2007.
Abkarian, M., M. Faivre, R. Horton, K. Smistrup, C. A. Best-Popescu, and H. A. Stone. Cellular-scale hydrodynamics. Biomed. Mater. 3:034011, 2008.
Abkarian, M., C. Lartigue, and A. Viallat. Tank treading and unbinding of deformable vesicles in shear flow: determination of the lift force. Phys. Rev. Lett. 88:068103, 2002.
Alizadehrad, D., Y. Imai, K. Nakaaki, T. Ishikawa, and T. Yamaguchi. Quantification of red blood cell deformation at high-hematocrit blood flow in microvessels. J. Biomech. 45:2684–2689, 2012.
Allen, M. P., and D. J. Tildesley. Computer Simulation of Liquids. New York: Clarendon Press, 1987.
AlMomani, T., H. S. Udaykumar, J. S. Marshall, and K. B. Chandran. Micro-scale dynamic simulation of erythrocyte–platelet interaction in blood flow. Ann. Biomed. Eng. 36:905–920, 2008.
Antia, M., T. Herricks, and P. K. Rathod. Microfluidic modeling of cell–cell interactions in malaria pathogenesis. PLoS Pathog. 3:939–945, 2007.
Bagchi, P. Mesoscale simulation of blood flow in small vessels. Biophys. J. 92:1858–1877, 2007.
Bagchi, P., and R. M. Kalluri. Dynamic rheology of a dilute suspension of elastic capsules: effect of capsule tank-treading, swinging and tumbling. J. Fluid Mech. 669:498–526, 2011.
Bagchi, P., A. S. Popel, and P. C. Johnson. Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow. J. Biomech. Eng. 127:1070–1080, 2005.
Bagge, U., and R. Karlsson. Maintenance of white blood cell margination at the passage through small venular junctions. Microvasc. Res. 20:92–95, 1980.
Bäumler, H., E. Donath, A. Krabi, W. Knippel, H. Budde, and A. Kiesewetter. Electrophoresis of human red blood cells and platelets: evidence for depletion of dextran. Biorheology 33:333–351, 1996.
Beck, W. S. (ed.). Hematology, 5th ed. Cambridge: MIT Press, 1991.
Bow, H., I. V. Pivkin, M. Diez-Silva, S. J. Goldfless, M. Dao, J. C. Niles, S. Suresh, and J. Han. A microfabricated deformability-based flow cytometer with application to malaria. Lab Chip 11:1065–1073, 2011.
Brooks, D. E. The effect of neutral polymers on the electrokinetic potential of cells and other charged particles. J. Colloid Interface Sci. 43:700–713, 1973.
Bugliarello, G., and J. Sevilla. Velocity distribution and other characteristics of steady and pulsatile blood flow in fine glass tubes. Biorheology 7:85–107, 1970.
Byun, H. S., T. Hillman, J. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. Dasari, S. Suresh, and Y.-K. Park. Optical measurements of biomechanical properties of individual erythrocytes from a sickle patient. Acta Biomater. 8:4130–4138, 2012.
Cantat, I., and C. Misbah. Lift force and dynamical unbinding of adhering vesicles under shear flow. Phys. Rev. Lett. 83:880–883, 1999.
Casson, N. Rheology of Disperse Systems. New York: Pergamon Press, 1992.
Chaudhuri, O., S. Parekh, W. Lam, and D. Fletcher. Combined atomic force microscopy and side-view optical imaging for mechanical studies of cells. Nat. Methods 6:383–387, 2009.
Chien, S., and K.-M. Jan. Ultrastructural basis of the mechanism of rouleaux formation. Microvasc. Res. 5:155–166, 1973.
Chien, S., S. Usami, R. J. Dellenback, M. I. Gregersen, L. B. Nanninga, and N. M. Guest. Blood viscosity: influence of erythrocyte aggregation. Science 157:829–831, 1967.
Chien, S., S. Usami, R. J. Kellenback, and M. I. Gregersen. Shear-dependent interaction of plasma proteins with erythrocytes in blood rheology. Am. J. Physiol. 219:143–153, 1970.
Chien, S., S. Usami, H. M. Taylor, J. L. Lundberg, and M. I. Gregersen. Effects of hematocrit and plasma proteins on human blood rheology at low shear rates. J. Appl. Physiol. 21:81–87, 1996.
Clausen, J. R., D. A. Reasor, Jr., and C. K. Aidun. The rheology and microstructure of concentrated non-colloidal suspensions of deformable capsules. J. Fluid Mech. 685:202–234, 2011.
Cokelet, G., E. W. Merrill, E. R. Gilliland, H. Shin, A. Britten, and J. R. E. Wells. The rheology of human blood-measurement near and at zero shear rate. Trans. Soc. Rheol. 7:303–317, 1963.
Cokelet, G. R., and H. L. Goldsmith. Decreased hydrodynamic resistance in the two-phase flow of blood through small vertical tubes at low flow rates. Circ. Res. 68:1–17, 1991.
Copley, A. L., C. R. Huang, and R. G. King. Rheogoniometric studies of whole human blood at shear rates from 1,000-0.0009 sec−1. Part I. Experimental findings. Biorheology 10:17–22, 1973.
Cranston, H. A., C. W. Boylan, G. L. Carroll, S. P. Sutera, J. R. Williamson, I. Y. Gluzman, and D. J. Krogstad. Plasmodium falciparum maturation abolishes physiologic red cell deformability. Science 223:400–403, 1984.
Cravalho, P., M. Diez-Silva, H. Chen, M. Dao, and S. Suresh. Cytoadherence of erythrocytes invaded by Plasmodium falciparum: quantitative contact-probing of a human malaria receptor. Acta Biomater. 9:6349–6359, 2013.
Crowl, L., and A. L. Fogelson. Computational model of whole blood exhibiting lateral platelet motion induced by red blood cells. Int. J. Numer. Methods Biomed. Eng. 26:471–487, 2010.
Crowl, L., and A. L. Fogelson. Analysis of mechanisms for platelet near-wall excess under arterial blood flow conditions. J. Fluid Mech. 676:348–375, 2011.
Dao, M., J. Li, and S. Suresh. Molecularly based analysis of deformation of spectrin network and human erythrocyte. Mater. Sci. Eng. C 26:1232–1244, 2006.
Dao, M., C. T. Lim, and S. Suresh. Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids 51:2259–2280, 2003.
Diez-Silva, M., M. Dao, J. Han, C.-T. Lim, and S. Suresh. Shape and biomechanical characteristics of human red blood cells in health and disease. MRS Bull. 35:382–388, 2010.
Diez-Silva, M., Y.-K. Park, S. Huang, H. Bow, O. Mercereau-Puijalon, G. Deplaine, C. Lavazec, S. Perrot, S. Bonnefoy, M. S. Feld, J. Han, M. Dao, and S. Suresh. Pf155/RESA protein influences the dynamic microcirculatory behavior of ring-stage Plasmodium falciparum infected red blood cells. Sci. Rep. 2:614, 2012.
Discher, D. E., D. H. Boal, and S. K. Boey. Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration. Biophys. J. 75:1584–1597, 1998.
Discher, D. E., N. Mohandas, and E. A. Evans. Molecular maps of red cell deformation: hidden elasticity and in situ connectivity. Science 266:1032–1035, 1994.
Doddi, S. K., and P. Bagchi. Lateral migration of a capsule in a plane Poiseuille flow in a channel. Int. J. Multiphase Flow 34:966–986, 2008.
Doddi, S. K., and P. Bagchi. Three-dimensional computational modeling of multiple deformable cells flowing in microvessels. Phys. Rev. E 79:046318, 2009.
Dupin, M. M., I. Halliday, C. M. Care, L. Alboul, and L. L. Munn. Modeling the flow of dense suspensions of deformable particles in three dimensions. Phys. Rev. E 75:066707, 2007.
Dupin, M. M., I. Halliday, C. M. Care, and L. L. Munn. Lattice boltzmann modeling of blood cell dynamics. Int. J. Comput. Fluid Dyn. 22:481–492, 2008.
Dzwinel, W., K. Boryczko, and D. A. Yuen. A discrete-particle model of blood dynamics in capillary vessels. J. Colloid Interface Sci. 258:163–173, 2003.
Eckstein, E. C., A. W., and F. J. Millero III. Conditions for the occurrence of large near-wall excesses of small particles during blood flow. Microvasc. Res. 36:31–39, 1988.
Eggleton, C. D., and A. S. Popel. Large deformation of red blood cell ghosts in a simple shear flow. Phys. Fluids 10:1834, 1998.
Enden, G., and A. S. Popel. A numerical study of plasma skimming in small vascular bifurcations. J. Biomech. Eng. 116:79–88, 1994.
Enderle, T., T. Ha, D. F. Ogletree, D. S. Chemla, C. Magowan, S. Weiss. Membrane specific mapping and colocalization of malarial and host skeletal proteins in the Plasmodium falciparum infected erythrocyte by dual-color near-field scanning optical microscopy. Proc. Natl Acad. Sci. U.S.A. 94:520–525, 1997.
Ermak, D. L., and J. A. McCammon. Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 69:1352–1360, 1978.
Espanol, P., and M. Revenga. Smoothed dissipative particle dynamics. Phys. Rev. E 67:026705, 2003.
Espanol, P., and P. Warren. Statistical mechanics of dissipative particle dynamics. Europhys. Lett. 30:191–196, 1995.
Evans, E. A., and R. Skalak. Mechanics and Thermodynamics of Biomembranes. Boca Raton, FL: CRC Press, 1980.
Fahraeus, R. The suspension stability of blood. Physiol. Rev 9:241–274, 1929.
Fahraeus, R. The influence of the rouleau formation of the erythrocytes on the rheology of the blood. Acta Med. Scand. 161:151–165, 1958.
Fahraeus, R., and T. Lindqvist. Viscosity of blood in narrow capillary tubes. Am. J. Phys. 96:562–568, 1931.
Fedosov, D. A., B. Caswell, and G. E. Karniadakis. A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. Biophys. J. 98:2215–2225, 2010.
Fedosov, D. A., B. Caswell, and G. E. Karniadakis. Systematic coarse-graining of spectrin-level red blood cell models. Comput. Methods Appl. Mech. Eng. 199:1937–1948, 2010.
Fedosov, D. A., B. Caswell, and G. E. Karniadakis. Wall shear stress-based model for adhesive dynamics of red blood cells in malaria. Biophys. J. 100:2084–2093, 2011.
Fedosov, D. A., B. Caswell, A. S. Popel, and G. E. Karniadakis. Blood flow and cell-free layer in microvessels. Microcirculation 17:615–628, 2010.
Fedosov, D. A., B. Caswell, S. Suresh, and G. E. Karniadakis. Quantifying the biophysical characteristics of Plasmodium falciparum-parasitized red blood cells in microcirculation. Proc. Natl Acad. Sci. U.S.A. 108:35–39, 2011.
Fedosov, D. A., J. Fornleitner, and G. Gompper. Margination of white blood cells in microcapillary flow. Phys. Rev. Lett. 108:028104, 2012.
Fedosov, D. A., H. Noguchi, and G. Gompper. Multiscale modeling of blood flow: from single cells to blood rheology. Biomech. Model. Mechanobiol., 2013. DOI:10.1007/s10237-013-0497-9.
Fedosov, D. A., W. Pan, B. Caswell, G. Gompper, and G. E. Karniadakis. Predicting human blood viscosity in silico. Proc. Natl Acad. Sci. U.S.A. 108:11772–11777, 2011.
Finger, E. B., K. D. Puri, R. Alon, M. B. Lawrence, U. H. von Andrian, and T. A. Springer. Adhesion through L-selectin requires a threshold hydrodynamic shear. Nature (London) 379:266–269, 1996.
Firrell, J. C., and H. H. Lipowsky. Leukocyte margination and deformation in mesenteric venules of rat. Am. J. Physiol. 256:H1667–H1674, 1989.
Fischer, T. M. Shape memory of human red blood cells. Biophys. J. 86:3304–3313, 2004.
Freund, J. B. Leukocyte margination in a model microvessel. Phys. Fluids 19:023301, 2007.
Freund, J. B., and M. M. Orescanin. Cellular flow in a small blood vessel. J. Fluid Mech. 671:466–490, 2011.
Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues, 2nd ed. New York: Springer, 1993.
Gaehtgens, P., C. Dührssen, and K. H. Albrecht. Motion, deformation, and interaction of blood cells and plasma during flow through narrow capillary tubes. Blood Cells 6:799–817, 1980.
Gidaspow, D., and J. Huang. Kinetic theory based model for blood flow and its viscosity. Ann. Biomed. Eng. 38:1534–1545, 2009.
Goldsmith, H. L., G. R. Cokelet, and P. Gaehtgens. Robin Fahraeus: evolution of his concepts in cardiovascular physiology. Am. J. Physiol. 257:H1005–H1015, 1989.
Goldsmith, H. L., and S. Spain. Margination of leukocytes in blood flow through small tubes. Microvasc. Res. 27:204–222, 1984.
Gompper, G., T. Ihle, D. M. Kroll, and R. G. Winkler. Multi-particle collision dynamics: a particle-based mesoscale simulation approach to the hydrodynamics of complex fluids. Adv. Polym. Sci. 221:1–87, 2009.
Groot, R. D., and P. B. Warren. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107:4423–4435, 1997.
Henon, S., G. Lenormand, A. Richert, and F. Gallet. A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys. J. 76:1145–1151, 1999.
Higgins, J. M., D. T. Eddington, S. N. Bhatia, and L. Mahadevan. Sickle cell vasoocclusion and rescue in a microfluidic device. Proc. Natl Acad. Sci. U.S.A. 104:20496–20500, 2007.
Holm, S. H., J. P. Beech, M. P. Barrett, and J. O. Tegenfeldt. Separation of parasites from human blood using deterministic lateral displacement. Lab Chip 11:1326–1332, 2011.
Hoogerbrugge, P. J., and J. M. V. A. Koelman. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 19:155–160, 1992.
Hou, H. W., A. A. S. Bhagat, A. G. L. Chong, P. Mao, K. S. W. Tan, J. Han, C. T. Lim. Deformability based cell margination—a simple microfluidic design for malaria-infected erythrocyte separation. Lab Chip 10:2605–2613, 2010.
Iordan A, Duperray A, Verdier C (2008) Fractal approach to the rheology of concentrated suspensions. Phys. Rev. E 77:011911
Itoh, T., S. Chien, and S. Usami. Effects of hemoglobin concentration on deformability of individual sickle cells after deoxygenation. Blood 85:2245–2253, 1995.
Jain, A., and L. L. Munn. Determinants of leukocyte margination in rectangular microchannels. PLoS ONE 4:e7104, 2009.
Janoschek, F., F. Toschii, and J. Harting. Simplified particulate model for coarse-grained hemodynamics simulations. Phys. Rev. E 82:056710, 2010.
Ju, M., S. S. Ye, B. Namgung, S. Cho, H. T. Low, H. L. Leo, and S. Kim. A review of numerical methods for red blood cell flow simulation. Computer Methods Biomech. Biomed. Eng., 2013. DOI:10.1080/10255842.2013.783574
Kaul, D. K., M. E. Fabry, P. Windisch, S. Baez, and R. L. Nagel. Erythrocytes in sickle-cell-anemia are heterogeneous in their rheological and hemodynamic characteristics. J. Clin. Invest. 72:22–31, 1983.
Kaul, D. K., and H. Xue. Rate of deoxygenation and rheologic behavior of blood in sickle cell anemia. Blood 77:1353–1361, 1991.
Kim, S., L. R. Long, A. S. Popel, M. Intaglietta, and P. C. Johnson. Temporal and spatial variations of cell-free layer width in arterioles. Am. J. Physiol. 293:H1526–H1535, 2007.
Kim, S., P. K. Ong, O. Yalcin, M. Intaglietta, and P. C. Johnson. The cell-free layer in microvascular blood flow. Biorheology 46:181–189, 2009.
Kumar, A., and M. D. Graham. Margination and segregation in confined flows of blood and other multicomponent suspensions. Soft Matter 8:10536–10548, 2012.
Kumar, A., and M. D. Graham. Mechanism of margination in confined flows of blood and other multicomponent suspensions. Phys. Rev. Lett. 109:108102, 2012.
LaCelle, P. L. Oxygen delivery to muscle cells during capillary vascular occlusion by sickle erythrocytes. Blood Cells 3:263–272, 1977.
Lei, H., D. A. Fedosov, B. Caswell, and G. E. Karniadakis. Blood flow in small tubes: quantifying the transition to the non-continuum regime. J. Fluid Mech. 722:214–239, 2013.
Lei, H., and G. E. Karniadakis. Quantifying the rheological and hemodynamic characteristics of sickle cell anemia. Biophys. J. 102:185–194, 2012.
Lei, H., and G. E. Karniadakis. Probing vaso-occlusion phenomena in sickle cell anemia via mesoscopic simulations. Proc. Natl Acad. Sci. U.S.A. 110:11326–11330, 2013.
Li J, Dao M, Lim CT, Suresh S (2005) Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. Biophys. J. 88:3707–3719
Li, X., P. M. Vlahovska, and G. E. Karniadakis. Continuum- and particle-based modeling of shapes and dynamics of red blood cells in health and disease. Soft Matter 9:28–37, 2013.
Liu, Y., and W. K. Liu. Rheology of red blood cell aggregation by computer simulation. J. Comput. Phys. 220:139–154, 2006.
Lucy, L. B. A numerical approach to testing the fission hypothesis. Astronom. J. 82:1013–1024, 1977.
MacMeccan, R. M., J. R. Clausen, G. P. Neitzel, and C. K. Aidun. Simulating deformable particle suspensions using a coupled lattice-Boltzmann and finite-element method. J. Fluid Mech. 618:13–39, 2009.
Maeda, N., Y. Suzuki, J. Tanaka, and N. Tateishi. Erythrocyte flow and elasticity of microvessels evaluated by marginal cell-free layer and flow resistance. Am. J. Physiol. 271:H2454–H2461, 1996.
Malevanets, A., and R. Kapral. Mesoscopic model for solvent dynamics. J. Chem. Phys. 110:8605–8613, 1999.
Mattice, W. L., and U. W. Suter. Conformational Theory of Large Molecules: The Rotational Isomeric State Model in Macromolecular Systems. New York: Wiley Interscience, 1994.
McWhirter, J. L., H. Noguchi, and G. Gompper. Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries. Proc. Natl Acad. Sci. U.S.A. 106:6039–6043, 2009.
Melchionna, S. A model for red blood cells in simulations of large-scale blood flows. Macromol. Theory Simul. 20:548–561, 2011.
Merrill, E. W., E. R. Gilliland, G. Cokelet, H. Shin, A. Britten, J. R. E. Wells. Rheology of human blood near and at zero flow. Biophys. J. 3:199–213, 1963.
Merrill, E. W., E. R. Gilliland, T. S. Lee, and E. W. Salzman. Blood rheology: effect of fibrinogen deduced by addition. Circ. Res. 18:437–446, 1966.
Messlinger, S., B. Schmidt, H. Noguchi, and G. Gompper. Dynamical regimes and hydrodynamic lift of viscous vesicles under shear. Phys. Rev. E 80:011901, 2009.
Mills, J. P., M. Diez-Silva, D. J. Quinn, M. Dao, M. J. Lang, K. S. W. Tan, C. T. Lim, G. Milon, P. H. David, O. Mercereau-Puijalon, S. Bonnefoy, and S. Suresh. Effect of plasmodial RESA protein on deformability of human red blood cells harboring Plasmodium falciparum. Proc. Natl Acad. Sci. U.S.A. 104:9213–9217, 2007.
Monaghan, J. J. Smoothed particle hydrodynamics. Rep. Prog. Phys. 68:1703–1759, 2005.
Murata, T. Effects of sedimentation of small red blood cell aggregates on blood flow in narrow horizontal tubes. Biorheology 33:267–283, 1996.
Neu, B., and H. J. Meiselman. Depletion-mediated red blood cell aggregation in polymer solutions. Biophys. J. 83:2482–2490, 2002.
Noguchi, H., and G. Gompper. Fluid vesicles with viscous membranes in shear flow. Phys. Rev. Lett. 93:258102, 2004.
Noguchi, H., and G. Gompper. Dynamics of fluid vesicles in shear flow: effect of the membrane viscosity and thermal fluctuations. Phys. Rev. E 72:011901, 2005.
Noguchi, H., and G. Gompper. Shape transitions of fluid vesicles and red blood cells in capillary flows. Proc. Natl Acad. Sci. U.S.A. 102:14159–14164, 2005.
Pan, W., B. Caswell, and G. E. Karniadakis. A low-dimensional model for the red blood cell. Soft Matter 6:4366–4376, 2010.
Pan, W., D. A. Fedosov, B. Caswell, and G. E. Karniadakis. Predicting dynamics and rheology of blood flow: a comparative study of multiscale and low-dimensional models of red blood cells. Microvasc. Res. 82:163–170, 2011.
Park, Y. K., M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh. Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proc. Natl Acad. Sci. U.S.A. 105:13730–13735, 2008.
Pearson, M. J., and H. H. Lipowsky. Influence of erythrocyte aggregation on leukocyte margination in postcapillary venules of rat mesentery. Am. J. Physiol. 279:H1460–H1471, 2000.
Peng, Z., X. Li, I. Pivkin, M. Dao, G. E. Karniadakis, and S. Suresh. Lipid-bilayer and cytoskeletal interactions in a red blood cell. Proc. Natl Acad. Sci. U.S.A. 110:13356–13361, 2013.
Picart, C., J. M. Piau, and H. Galliard. Human blood shear yield stress and its hematocrit dependence. J. Rheol. 42:1–12, 1998.
Pivkin, I. V., and G. E. Karniadakis. Accurate coarse-grained modeling of red blood cells. Phys. Rev. Lett. 101:118105, 2008.
Popel, A. S., and P. C. Johnson. Microcirculation and hemorheology. Annu. Rev. Fluid Mech. 37:43–69, 2005.
Popescu, G., Y.-K. Park, R. R. Dasari, K. Badizadegan, and M. S. Feld. Coherence properties of red blood cell membrane motions. Phys. Rev. E 76:031902, 2007.
Pozrikidis, C. Numerical simulation of cell motion in tube flow. Ann. Biomed. Eng. 33:165–178, 2005.
Pribush, A., D. Zilberman-Kravits, and N. Meyerstein. The mechanism of the dextran-induced red blood cell aggregation. Eur. Biophys. J. 36:85–94, 2007.
Pries, A. R., K. Ley, M. Claassen, and P. Gaehtgens. Red cell distribution at microvascular bifurcations. Microvasc. Res. 38:81–101, 1989.
Pries, A. R., D. Neuhaus, and P. Gaehtgens. Blood viscosity in tube flow: dependence on diameter and hematocrit. Am. J. Physiol. 263:H1770–H1778, 1992.
Pries, A. R., T. W. Secomb, and P. Gaehtgens. Structure and hemodynamics of microvascular networks: heterogeneity and correlations. Am. J. Physiol. 269:H1713–H1722, 1995.
Pries, A. R., T. W. Secomb, and P. Gaehtgens. Biophysical aspects of blood flow in the microvasculature. Cardiovasc. Res. 32:654–667, 1996.
Puig-de Morales-Marinkovic, M., K. T. Turner, J. P. Butler, J. J. Fredberg, and S. Suresh. Viscoelasticity of the human red blood cell. Am. J. Physiol. 293:C597–C605, 2007.
Raventos-Suarez, C., D. Kaul, and R. Nagel. Membrane knobs are required for the microcirculatory obstruction induced by Plasmodium falciparum-infected erythrocytes. Proc. Natl Acad. Sci. U.S.A. 82:3829–3833, 1985.
Reasor, Jr., D. A., M. Mehrabadi, D. N. Ku, and C. K. Aidun. Determination of critical parameters in platelet margination. Ann. Biomed. Eng. 41:238–249, 2013.
Reinke, W., P. Gaehtgens, and P. C. Johnson. Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimentation. Am. J. Physiol. 253:H540–H547, 1987.
Rosenbluth, M., W. Lam, and D. Fletcher. Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry. Lab Chip 8:1062–1070, 2008.
Samsel, R. W., and A. S. Perelson. Kinetics of rouleau formation: I. A mass action approach with geometric features. Biophys. J. 37:493–514, 1982.
Schmid-Schönbein, H., and R. E. Wells. Rheological properties of human erythrocytes and their influence upon the “anomalous” viscosity of blood. Ergeb. Physiol. Biol. Chem. Exper. Pharmakol. 63:146–219, 1971.
Sharan, M., and A. S. Popel. A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall. Biorheology 38:415–428, 2001.
Shelby, J. P., J. White, K. Ganesan, P. K. Rathod, and D. T. Chiu. A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes. Proc. Natl Acad. Sci. U.S.A. 100:14618–14622, 2003.
Skalak, R., and P. I. Branemark. Deformation of red blood cells in capillaries. Science 164:717–719, 1969.
Skalak, R., S. R. Keller, and T. W. Secomb. Mechanics of blood flow. J. Biomech. Eng. 103:102–115, 1981.
Skotheim, J. M., and T. W. Secomb. Red blood cells and other nonspherical capsules in shear flow: oscillatory dynamics and the tank-treading-to-tumbling transition. Phys. Rev. Lett. 98:078301, 2007.
Springer, T. A. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu. Rev. Physiol. 57:827–872, 1995.
Steffen, P., C. Verdier, and C. Wagner. Quantification of depletion-induced adhesion of red blood cells. Phys. Rev. Lett. 110:018102, 2013.
Succi, S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford: Oxford University Press, 2001.
Sun, C., C. Migliorini, and L. L. Munn. Red blood cells initiate leukocyte rolling in postcapillary expansions: a lattice Boltzmann analysis. Biophys. J. 85:208–222, 2003.
Suresh, S., J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein. Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater. 1:15–30, 2005.
Suzuki, Y., N. Tateishi, M. Soutani, and N. Maeda. Deformation of erythrocytes in microvessels and glass capillaries: effect of erythrocyte deformability. Microcirculation 3:49–57, 1996.
Tangelder, G. J., H. C. Teirlinck, D. W. Slaaf, and R. S. Reneman. Distribution of blood platelets flowing in arterioles. Am. J. Physiol. 248:H318–H323, 1985.
Thurston, G. B. Viscoelastic properties of blood and blood analogs. In Advances in Hemodynamics and Hemorheology, Vol. 1, edited by T. V. How. Greenwich, CT: JAI Press, 1996, pp. 1–30.
Tilles, A. W., and E. C. Eckstein. The near-wall excess of platelet-sized particles in blood flow: its dependence on hematocrit and wall shear rate. Microvasc. Res. 33:211–223, 1987.
Tokarev, A. A., A. A. Butylin, and F. I. Ataullakhanov. Platelet adhesion from shear blood flow is controlled by near-wall rebounding collisions with erythrocytes. Biophys. J. 100:799–808, 2011.
Tokarev, A. A., A. A. Butylin, E. A. Ermakova, E. E. Shnol, G. P. Panasenko, and F. I. Ataullakhanov. Finite platelet size could be responsible for platelet margination effect. Biophys. J. 101:1835–1843, 2011
Tomaiuolo, G., V. Preziosi, M. Simeone, S. Guido, R. Ciancia, V. Martinelli, C. Rinaldi, B. Rotoli. A methodology to study the deformability of red blood cells flowing in microcapillaries in vitro. Ann Ist Super Sanita 43:186–192, 2007.
Tomaiuolo, G., M. Simeone, V. Martinelli, B. Rotoli, and S. Guido. Red blood cell deformation in microconfined flow. Soft Matter 5:3736–3740, 2009.
Tousia, N., B. Wang, K. Pant, M. F. Kiani, and B. Prabhakarpandian. Preferential adhesion of leukocytes near bifurcations is endothelium independent. Microvasc. Res. 80:384–388, 2010.
Uijttewaal, W. S., E. J. Nijhof, P. J. Bronkhorst, E. Den Hartog, and R. M. Heethaar. Near-wall excess of platelets induced by lateral migration of erythrocytes in flowing blood. Am. J. Physiol. 264:H1239–H1244, 1993.
Wang,T., T.-W. Pan, Z. W. Xing, and R. Glowinski. Numerical simulation of rheology of red blood cell rouleaux in microchannels. Phys. Rev. E 79:041916, 2009.
Waugh, R., and E. A. Evans. Thermoelasticity of red blood cell membrane. Biophys. J. 26:115–131, 1979.
Weinbaum, S., J. M. Tarbell, and E. R. Damiano. The structure and function of the endothelial glycocalyx layer. Annu. Rev. Biomed. Eng. 9:121–167, 2007.
Wendt, J. F. (ed.). Computational Fluid Dynamics, 3rd ed. Berlin: Springer, 2009.
Woldhuis, B., G. J. Tangelder, D. W. Slaaf, and R. S. Reneman. Concentration profile of blood platelets differs in arterioles and venules. Am. J. Physiol. 262:H1217–H1223, 1992.
Yamaguchi, S., T. Yamakawa, and H. Niimi. Cell-free plasma layer in cerebral microvessels. Biorheology 29:251–260, 1992.
Zhang, J., P. C. Johnson, and A. S. Popel. Red blood cell aggregation and dissociation in shear ows simulated by lattice Boltzmann method. J. Biomech. 41:47–55, 2008.
Zhao, H., A. H. G. Isfahani, L. N. Olson, and J. B. Freund. Molecular dynamics simulations of tethered membranes with periodic boundary conditions. J. Comput. Phys. 229:3726–3744, 2010.
Zhao, H., and E. S. G. Shaqfeh. Shear-induced platelet margination in a microchannel. Phys. Rev. E 83:061924, 2011.
Zhao, H., E. S. G. Shaqfeh, and V. Narsimhan. Shear-induced particle migration and margination in a cellular suspension. Phys. Fluids 24:011902, 2012.
Zhao, Q., L. G. Durand, L. Allard, and G. Cloutier. Effects of a sudden flow reduction on red blood cell rouleau formation and orientation using RF backscattered power. Ultrasound Med. Biol. 24:503–511, 1998.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4