A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-013-0914-3 below:

Kinematic and Kinetic Interactions During Normal and ACL-Deficient Gait: A Longitudinal In Vivo Study

References
  1. Allen, M. J., J. E. Houlton, S. B. Adams, and N. Rushton. The surgical anatomy of the stifle joint in sheep. Vet. Surg. 27:596–605, 1998.

    Article  CAS  PubMed  Google Scholar 

  2. Andriacchi, T. P., and C. O. Dyrby. Interactions between kinematics and loading during walking for the normal and ACL deficient knee. J. Biomech. 38:293–298, 2005.

    Article  PubMed  Google Scholar 

  3. Andriacchi, T. P., A. Mundermann, R. L. Smith, E. J. Alexander, C. O. Dyrby, and S. Koo. A framework for the in vivo pathomechanics of osteoarthritis at the knee. Ann. Biomed. Eng. 32:447–457, 2004.

    Article  PubMed  Google Scholar 

  4. Atarod Pilambaraei, M., E. J. O’Brien, C. B. Frank, and N. G. Shrive. There is significant load sharing and physical interaction between the anteromedial and posterolateral bundles of the ovine ACL under anterior tibial loads. Knee. 19:797–803, 2012.

    Article  CAS  PubMed  Google Scholar 

  5. Beynnon, B. D., B. C. Fleming, R. Labovitch, and B. Parsons. Chronic anterior cruciate ligament deficiency is associated with increased anterior translation of the tibia during the transition from non-weightbearing to weightbearing. J. Orthop. Res. 20:332–337, 2002.

    Article  PubMed  Google Scholar 

  6. Chen, C. H., J. S. Li, A. Hosseini, H. R. Gadikota, T. J. Gill, and G. Li. Anteroposterior stability of the knee during the stance phase of gait after anterior cruciate ligament deficiency. Gait Posture. 35:467–471, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Defrate, L. E., R. Papannagari, T. J. Gill, J. M. Moses, N. P. Pathare, and G. Li. The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: an in vivo imaging analysis. Am. J. Sports Med. 34:1240–1246, 2006.

    Article  PubMed  Google Scholar 

  8. Dyrby, C. O., and T. P. Andriacchi. Secondary motions of the knee during weight bearing and non-weight bearing activities. J. Orthop. Res. 22:794–800, 2004.

    Article  PubMed  Google Scholar 

  9. Ellis, B. J., T. J. Lujan, M. S. Dalton, and J. A. Weiss. Medial collateral ligament insertion site and contact forces in the ACL-deficient knee. J. Orthop. Res. 24:800–810, 2006.

    Article  PubMed  Google Scholar 

  10. Ferber, R., L. R. Osternig, M. H. Woollacott, N. J. Wasielewski, and J. H. Lee. Gait mechanics in chronic ACL deficiency and subsequent repair. Clin. Biomech. (Bristol, Avon). 17:274–285, 2002.

    Article  PubMed  Google Scholar 

  11. Grood, E. S., and W. J. Suntay. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J. Biomech. Eng. 105:136–144, 1983.

    Article  CAS  PubMed  Google Scholar 

  12. Guess, T. M., and A. Stylianou. Simulation of anterior cruciate ligament deficiency in a musculoskeletal model with anatomical knees. Open Biomed. Eng. J. 6:23–32, 2012.

    PubMed Central  PubMed  Google Scholar 

  13. Hart, J. M., B. Pietrosimone, J. Hertel, and C. D. Ingersoll. Quadriceps activation following knee injuries: a systematic review. J. Athl. Train. 45:87–97, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Hurd, W. J., and L. Snyder-Mackler. Knee instability after acute ACL rupture affects movement patterns during the mid-stance phase of gait. J. Orthop. Res. 5:1369–1377, 2007.

    Article  Google Scholar 

  15. Jiang, W., S. G. Gao, K. H. Li, L. Luo, Y. S. Li, W. Luo, and G. H. Lei. Impact of partial and complete rupture of anterior cruciate ligament on medial meniscus: a cadavaric study. Indian J. Orthop. 46:514–519, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Joshi, M. D., J. K. Suh, T. Marui, and S. L. Woo. Interspecies variation of compressive biomechanical properties of the meniscus. J. Biomed. Mater. Res. 29:823–828, 1995.

    Article  CAS  PubMed  Google Scholar 

  17. Kanamori, A., M. Sakane, J. Zeminski, T. W. Rudy, and S. L. Woo. In-situ force in the medial and lateral structures of intact and ACL-deficient knees. J. Orthop. Sci. 5:567–571, 2000.

    Article  CAS  PubMed  Google Scholar 

  18. Knoll, Z., R. M. Kiss, and L. Kocsis. Gait adaptation in ACL deficient patients before and after anterior cruciate ligament reconstruction surgery. J. Electromyogr. Kinesiol. 14:287–294, 2004.

    Article  PubMed  Google Scholar 

  19. Li, G., L. E. DeFrate, H. Sun, and T. J. Gill. In vivo elongation of the anterior cruciate ligament and posterior cruciate ligament during knee flexion. Am. J. Sports Med. 32:1415–1420, 2004.

    Article  PubMed  Google Scholar 

  20. Li, G., R. Papannagari, L. E. DeFrate, J. D. Yoo, S. E. Park, and T. J. Gill. The effects of ACL deficiency on mediolateral translation and varus-valgus rotation. Acta. Orthop. 78:355–360, 2007.

    Article  PubMed  Google Scholar 

  21. Manal, K., and T. S. Buchanan. An electromyogram-driven musculoskeletal model of the knee to predict in vivo joint contact forces during normal and novel gait patterns. J. Biomech. Eng. 135:021014, 2013.

    Article  PubMed  Google Scholar 

  22. Miyasaka, T., H. Matsumoto, Y. Suda, T. Otani, and Y. Toyama. Coordination of the anterior and posterior cruciate ligaments in constraining the varus–valgus and internal–external rotatory instability of the knee. J. Orthop. Sci. 7:348–353, 2002.

    Article  PubMed  Google Scholar 

  23. Moglo, K. E., and A. Shirazi-Adl. Biomechanics of passive knee joint in drawer: load transmission in intact and ACL-deficient joints. Knee. 10:265–276, 2003.

    Article  CAS  PubMed  Google Scholar 

  24. Nigg, B. M., and W. Herzog. Biomechanics of the Musculo-Skeletal System (3rd ed.). New Jersey: Wiley, 2007.

    Google Scholar 

  25. Osterhoff, G., S. Loffler, H. Steinke, C. Feja, C. Josten, and P. Hepp. Comparative anatomical measurements of osseous structures in the ovine and human knee. Knee. 18:98–103, 2011.

    Article  PubMed  Google Scholar 

  26. Papageorgiou, C. D., J. E. Gil, A. Kanamori, J. A. Fenwick, S. L. Woo, and F. H. Fu. The biomechanical interdependence between the anterior cruciate ligament replacement graft and the medial meniscus. Am. J. Sports Med. 29:226–231, 2001.

    CAS  PubMed  Google Scholar 

  27. Shelburne, K. B., M. G. Pandy, and M. R. Torry. Comparison of shear forces and ligament loading in the healthy and ACL-deficient knee during gait. J. Biomech. 37:313–319, 2004.

    Article  PubMed  Google Scholar 

  28. Shelburne, K. B., M. R. Torry, and M. G. Pandy. Muscle, ligament, and joint-contact forces at the knee during walking. Med. Sci. Sports Exerc. 37:1948–1956, 2005.

    Article  PubMed  Google Scholar 

  29. Smith, H. C., P. Vacek, R. J. Johnson, J. R. Slauterbeck, J. Hashemi, S. Shultz, and B. D. Beynnon. Risk factors for anterior cruciate ligament injury: a review of the literature—part 2: hormonal, genetic, cognitive function, previous injury, and extrinsic risk factors. Sports Health 4:155–161, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Smith, H. C., P. Vacek, R. J. Johnson, J. R. Slauterbeck, J. Hashemi, S. Shultz, and B. D. Beynnon. Risk factors for anterior cruciate ligament injury: a review of the literature—part 1: neuromuscular and anatomic risk. Sports Health 4:69–78, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Tapper, J. E., S. Fukushima, H. Azuma, C. Sutherland, L. Marchuk, et al. Dynamic in vivo three-dimensional (3D) kinematics of the anterior cruciate ligament/medial collateral ligament transected ovine stifle joint. J. Orthop. Res. 26:660–672, 2008.

    Article  PubMed  Google Scholar 

  32. Tapper, J. E., S. Fukushima, H. Azuma, G. M. Thornton, J. L. Ronsky, et al. Dynamic in vivo kinematics of the intact ovine stifle joint. J. Orthop. Res. 24:782–792, 2006.

    Article  PubMed  Google Scholar 

  33. Tapper, J. E., Y. Funakoshi, M. Hariu, L. Marchuk, G. M. Thornton, et al. ACL/MCL transection affects knee ligament insertion distance of healing and intact ligaments during gait in the Ovine model. J. Biomech. 42:1825–1833, 2009.

    Article  PubMed  Google Scholar 

  34. Tashman, S., W. Anderst, P. Kolowich, S. Havstad, and S. Arnoczky. Kinematics of the ACL-deficient canine knee during gait: serial changes over two years. J. Orthop. Res. 22:931–941, 2004.

    Article  PubMed  Google Scholar 

  35. Van de Velde, S. K., L. E. DeFrate, T. J. Gill, J. M. Moses, R. Papannagari, and G. Li. The effect of anterior cruciate ligament deficiency on the in vivo elongation of the medial and lateral collateral ligaments. Am. J. Sports Med. 35:294–300, 2007.

    Article  PubMed  Google Scholar 

  36. von Porat, A., M. Henriksson, E. Holmstrom, C. A. Thorstensson, L. Mattsson, and E. M. Roos. Knee kinematics and kinetics during gait, step and hop in males with a 16 years old ACL injury compared with matched controls. Knee Surg. Sports Traumatol. Arthrosc. 14:546–554, 2006.

    Article  Google Scholar 

  37. Woo, S. L., M. B. Fisher, and A. J. Feola. Contribution of biomechanics to management of ligament and tendon injuries. Mol. Cell. Biomech. 5:49–68, 2008.

    PubMed  Google Scholar 

  38. Woo, S. L., C. Wu, O. Dede, F. Vercillo, and S. Noorani. Biomechanics and anterior cruciate ligament reconstruction. J. Orthop. Surg. Res. 1:2, 2006.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Zhang, L. Q., R. G. Shiavi, T. J. Limbird, and J. M. Minorik. Six degrees-of-freedom kinematics of ACL deficient knees during locomotion-compensatory mechanism. Gait Posture. 17:34–42, 2003.

    Article  PubMed  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4