A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-013-0913-4 below:

Predicting the Elastic Properties of Selective Laser Sintered PCL/β-TCP Bone Scaffold Materials Using Computational Modelling

References
  1. Bhumiratana, S., W. L. Grayson, A. Castaneda, D. N. Rockwood, E. S. Gil, D. L. Kaplan, and G. Vunjak-Novakovic. Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds. Biomaterials 32:2812–2820, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Bitsakos, C., J. Kerner, I. Fisher, and A. A. Amis. The effect of muscle loading on the simulation of bone remodelling in the proximal femur. J. Biomech. 38:133–139, 2005.

    Article  PubMed  Google Scholar 

  3. Bohm, H. J. A short introduction to continuum micromechanics. In: Mechanics of Microstructured Materials. CISM Courses and Lectures, edited by H. J. Bohm. Vienna: Springer-Verlag, 2004, pp. 1–40.

    Chapter  Google Scholar 

  4. Cahill, S., S. Lohfeld, and P. E. McHugh. Finite element predictions compared to experimental results for the effective modulus of bone tissue engineering scaffolds fabricated by selective laser sintering. J. Mater. Sci. Mater. Med. 20:1255–1262, 2009.

    Article  CAS  PubMed  Google Scholar 

  5. Chan, K. S., W. Liang, W. L. Francis, and D. P. Nicolella. A multiscale modeling approach to scaffold design and property prediction. J. Mech. Behav. Biomed. Mater. 3:584–593, 2010.

    Article  CAS  PubMed  Google Scholar 

  6. Charles-Harris, M., S. del Valle, E. Hentges, P. Bleuet, D. Lacroix, and J. A. Planell. Mechanical and structural characterisation of completely degradable polylactic acid/calcium phosphate glass scaffolds. Biomaterials 28:4429–4438, 2007.

    Article  CAS  PubMed  Google Scholar 

  7. Chateau, C. Multiscale approach of mechanical behaviour of SiC/SiC composites: elastic behaviour at the scale of the tow. Technische Mechanik 30:45–55, 2010.

    Google Scholar 

  8. Chatterjee, K., L. Sun, L. C. Chow, M. F. Young, and C. G. Simon. Combinatorial screening of osteoblast response to 3D calcium phosphate/poly(ε-caprolactone) scaffolds using gradients and arrays. Biomaterials 32:1361–1369, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Chen, B., K. Sun, and T. Ren. Mechanical and viscoelastic properties of chitin fiber reinforced poly(ε-caprolactone). Eur. Polym. J. 41:453–457, 2005.

    Article  CAS  Google Scholar 

  10. Di Palma, F., A. Guignandon, A. Chamson, M.-H. Lafage-Proust, N. Laroche, S. Peyroche, L. Vico, and A. Rattner. Modulation of the responses of human osteoblast-like cells to physiologic mechanical strains by biomaterial surfaces. Biomaterials 26:4249–4257, 2005.

    Article  PubMed  Google Scholar 

  11. Dong, J., T. Uemura, Y. Shirasaki, and T. Tateishi. Promotion of bone formation using highly pure porous beta-TCP combined with bone marrow-derived osteoprogenitor cells. Biomaterials 23:4493–4502, 2002.

    Article  CAS  PubMed  Google Scholar 

  12. Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.

    Article  CAS  PubMed  Google Scholar 

  13. Eshraghi, S., and S. Das. Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomater. 6:2467–2476, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Eshraghi, S., and S. Das. Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone–hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering. Acta Biomater. 2012. doi:10.1016/j.actbio.2012.04.022.

    PubMed Central  PubMed  Google Scholar 

  15. Galli, M., and J. Botsis. An elastoplastic three dimensional homogenization model for particle reinforced composites. Comput. Mater. Sci. 41:312–321, 2008.

    Article  Google Scholar 

  16. Guldberg, R. E., N. J. Caldwell, X. E. Guo, R. W. Goulet, S. J. Hollister, and S. A. Goldstein. Mechanical stimulation of tissue repair in the hydraulic bone chamber. J. Bone Miner. Res. 12:1295–1302, 1997.

    Article  CAS  PubMed  Google Scholar 

  17. Gunatillake, P. A., and R. Adhikari. Biodegradable synthetic polymers for tissue engineering. Eur. Cells Mater. 5:1–16, 2003.

    CAS  Google Scholar 

  18. Gupta, K. K., A. Kundan, P. K. Mishra, P. Sirvastava, S. Mohanty, N. K. Singh, A. Mishra, and P. Maiti. Polycaprolactone composites with TiO2 for potential nanobiomaterials: tunable properties using different phases. Phys. Chem. Chem. Phys. 14:12844–12853, 2012.

    Article  CAS  PubMed  Google Scholar 

  19. Harrison, N. M., P. F. McDonnell, D. C. O’Mahoney, O. D. Kennedy, F. J. O’Brien, and P. E. McHugh. Heterogeneous linear elastic trabecular bone modelling using micro-CT attenuation data and experimentally measured heterogeneous tissue properties. J. Biomech. 41:2589–2596, 2008.

    Article  PubMed  Google Scholar 

  20. Hazanov, S. Hill condition and overall properties of composites. Arch. Appl. Mech. 68:385–394, 1998.

    Article  Google Scholar 

  21. Kang, Y., A. Scully, D. A. Young, S. Kim, H. Tsao, M. Sen, and Y. Yang. Enhanced mechanical performance and biological evaluation of a PLGA coated β-TCP composite scaffold for load-bearing applications. Eur. Polymer J. 47:1569–1577, 2011.

    Article  CAS  Google Scholar 

  22. Kanit, T., and S. Forest. Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int. J. Solids Struct. 40:3647–3679, 2003.

    Article  Google Scholar 

  23. Kanit, T., F. N’Guyen, S. Forest, D. Jeulin, M. Reed, and S. Singleton. Apparent and effective physical properties of heterogeneous materials: representativity of samples of two materials from food industry. Comput. Methods Appl. Mech. Eng. 195:3960–3982, 2006.

    Article  Google Scholar 

  24. Koike, M., H. Shimokawa, Z. Kanno, K. Ohya, and K. Soma. Effects of mechanical strain on proliferation and differentiation of bone marrow stromal cell line ST2. J. Bone Miner. Metab. 23:219–225, 2005.

    Article  PubMed  Google Scholar 

  25. Lam, C. X. F., M. M. Savalani, S.-H. Teoh, and D. W. Hutmacher. Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions. Biomed. Mater. 3:034108, 2008.

    Article  PubMed  Google Scholar 

  26. Lee, H., and G. Kim. Three-dimensional plotted PCL/β-TCP scaffolds coated with a collagen layer: preparation, physical properties and in vitro evaluation for bone tissue regeneration. J. Mater. Chem. 21:6305, 2011.

    Article  CAS  Google Scholar 

  27. Lee, S. J., G. J. Lim, J.-W. Lee, A. Atala, and J. J. Yoo. In vitro evaluation of a poly(lactide-co-glycolide)-collagen composite scaffold for bone regeneration. Biomaterials 27:3466–3472, 2006.

    Article  CAS  PubMed  Google Scholar 

  28. Lei, Y., B. Rai, K. Ho, and S. Teoh. In vitro degradation of novel bioactive polycaprolactone—20% tricalcium phosphate composite scaffolds for bone engineering. Mater. Sci. Eng. C 27:293–298, 2007.

    Article  CAS  Google Scholar 

  29. Liebschner, M. A. K., R. Müller, S. J. Wimalawansa, C. S. Rajapakse, and G. H. Gunaratne. Testing two predictions for fracture load using computer models of trabecular bone. Biophys. J. 89:759–767, 2005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Liedert, A., D. Kaspar, R. Blakytny, L. Claes, and A. Ignatius. Signal transduction pathways involved in mechanotransduction in bone cells. Biochem. Biophys. Res. Commun. 349:1–5, 2006.

    Article  CAS  PubMed  Google Scholar 

  31. Little, U., F. Buchanan, E. Harkin-Jones, M. McCaigue, D. Farrar, and G. Dickson. Accelerated degradation behaviour of poly(ε-caprolactone) via melt blending with poly(aspartic acid-co-lactide) (PAL). Polym. Degrad. Stab. 94:213–220, 2009.

    Article  CAS  Google Scholar 

  32. Liu, G., L. Zhao, L. Cui, W. Liu, and Y. Cao. Tissue-engineered bone formation using human bone marrow stromal cells and novel beta-tricalcium phosphate. Biomed. Mater. 2:78–86, 2007.

    Article  CAS  PubMed  Google Scholar 

  33. Lohfeld, S., S. Cahill, V. Barron, P. McHugh, L. Dürselen, L. Kreja, C. Bausewein, and A. Ignatius. Fabrication, mechanical and in vivo performance of polycaprolactone/tricalcium phosphate composite scaffolds. Acta Biomater. 8:3446–3456, 2012.

    Article  CAS  PubMed  Google Scholar 

  34. Lohfeld, S., M. A. Tyndyk, S. Cahill, N. Flaherty, V. Barron, and P. E. McHugh. A method to fabricate small features on scaffolds for tissue engineering via selective laser sintering. J. Biomed. Sci. Eng. 03:138–147, 2010.

    Article  Google Scholar 

  35. Lu, Z., and H. Zreiqat. Beta-tricalcium phosphate exerts osteoconductivity through alpha2beta1 integrin and down-stream MAPK/ERK signaling pathway. Biochem. Biophys. Res. Commun. 394:323–329, 2010.

    Article  CAS  PubMed  Google Scholar 

  36. Melchels, F. P. W., B. Tonnarelli, A. L. Olivares, I. Martin, D. Lacroix, J. Feijen, D. J. Wendt, and D. W. Grijpma. The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding. Biomaterials 32:2878–2884, 2011.

    Article  CAS  PubMed  Google Scholar 

  37. Middleton, J. C., and A. J. Tipton. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21:2335–2346, 2000.

    Article  CAS  PubMed  Google Scholar 

  38. Milan, J.-L., J. A. Planell, and D. Lacroix. Simulation of bone tissue formation within a porous scaffold under dynamic compression. Biomech. Model. Mechanobiol. 9:583–596, 2010.

    Article  PubMed  Google Scholar 

  39. Mondrinos, M. J., R. Dembzynski, L. Lu, V. K. C. Byrapogu, D. M. Wootton, P. I. Lelkes, and J. Zhou. Porogen-based solid freeform fabrication of polycaprolactone–calcium phosphate scaffolds for tissue engineering. Biomaterials 27:4399–4408, 2006.

    Article  CAS  PubMed  Google Scholar 

  40. Nawathe, S., F. Juillard, and T. M. Keaveny. Theoretical bounds for the influence of tissue-level ductility on the apparent-level strength of human trabecular bone. J. Biomech. 46:1293–1299, 2013.

    Article  PubMed  Google Scholar 

  41. Nemat-Nasser, S., and M. Hori. Micromechanics: Overall Properties of Heterogeneous Materials. Amsterdam: Elsevier, 687 pp., 1993.

  42. Ng, C. S., S. H. Teoh, T. S. Chung, and D. W. Hutmacher. Simultaneous biaxial drawing of poly(e-caprolactone) films. Polymer 41:5855–5864, 2000.

    Article  CAS  Google Scholar 

  43. Pahr, D. H., and P. K. Zysset. Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Biomech. Model. Mechanobiol. 7:463–476, 2008.

    Article  PubMed  Google Scholar 

  44. Rai, B., J. L. Lin, Z. X. H. Lim, R. E. Guldberg, D. W. Hutmacher, and S. M. Cool. Differences between in vitro viability and differentiation and in vivo bone-forming efficacy of human mesenchymal stem cells cultured on PCL–TCP scaffolds. Biomaterials 31:7960–7970, 2010.

    Article  CAS  PubMed  Google Scholar 

  45. Roosa, S. M. M., J. M. Kemppainen, E. N. Moffitt, P. H. Krebsbach, and S. J. Hollister. The pore size of polycaprolactone scaffolds has limited influence on bone regeneration in an in vivo model. J. Biomed. Mater. Res. A 92:359–368, 2010.

    Article  PubMed  Google Scholar 

  46. Roshan-Ghias, A., F. M. Lambers, M. Gholam-Rezaee, R. Müller, and D. P. Pioletti. In vivo loading increases mechanical properties of scaffold by affecting bone formation and bone resorption rates. Bone 49:1357–1364, 2011.

    Article  CAS  PubMed  Google Scholar 

  47. Sabir, M. I., X. Xu, and L. Li. A review on biodegradable polymeric materials for bone tissue engineering applications. J. Mater. Sci. 44:5713–5724, 2009.

    Article  CAS  Google Scholar 

  48. Saey, H., and D. W. Hutmacher. Application of micro CT and computation modeling in bone tissue engineering. Comput. Aided Des. 37:1151–1161, 2005.

    Article  Google Scholar 

  49. Sandino, C., and D. Lacroix. A dynamical study of the mechanical stimuli and tissue differentiation within a CaP scaffold based on micro-CT finite element models. Biomech. Model. Mechanobiol. 2010. doi:10.1007/s10237-010-0256-0.

    PubMed  Google Scholar 

  50. Sanyal, A., A. Gupta, H. H. Bayraktar, R. Y. Kwon, and T. M. Keaveny. Shear strength behavior of human trabecular bone. J. Biomech. 45:2513–2519, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Scheiner, S., R. Sinibaldi, B. Pichler, V. Komlev, C. Renghini, C. Vitale-Brovarone, F. Rustichelli, and C. Hellmich. Micromechanics of bone tissue-engineering scaffolds, based on resolution error-cleared computer tomography. Biomaterials 30:2411–2419, 2009.

    Article  CAS  PubMed  Google Scholar 

  52. Shah, M., I. Ahmed, B. Marelli, C. Rudd, M. N. Bureau, and S. N. Nazhat. Modulation of polycaprolactone composite properties through incorporation of mixed phosphate glass formulations. Acta Biomater. 6:3157–3168, 2010.

    Article  Google Scholar 

  53. Shao, X., J. C. H. Goh, D. W. Hutmacher, E. H. Lee, and G. Zigang. Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model. Tissue Eng. 12:1539–1551, 2006.

    Article  CAS  PubMed  Google Scholar 

  54. Van Cleynenbreugel, T., J. Schrooten, H. Van Oosterwyck, and J. Vander Sloten. Micro-CT-based screening of biomechanical and structural properties of bone tissue engineering scaffolds. Med. Biol. Eng. Comput. 44:517–525, 2006.

    Article  PubMed  Google Scholar 

  55. Vance, J., S. Galley, D. F. Liu, and S. W. Donahue. Mechanical stimulation of MC3T3 osteoblastic cells in a bone tissue-engineering bioreactor enhances prostaglandin E2 release. Tissue Eng. 11:1832–1839, 2005.

    Article  CAS  PubMed  Google Scholar 

  56. Wang, C., X. Zhou, and M. Wang. Influence of sintering temperatures on hardness and Young’s modulus of tricalcium phosphate bioceramic by nanoindentation technique. Mater. Charact. 52:301–307, 2004.

    Article  CAS  Google Scholar 

  57. Williams, J. M., A. Adewunmi, R. M. Schek, C. L. Flanagan, P. H. Krebsbach, S. E. Feinberg, S. J. Hollister, and S. Das. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26:4817–4827, 2005.

    Article  CAS  PubMed  Google Scholar 

  58. Willie, B. M., D. Ph, X. Yang, N. H. Kelly, J. Han, T. Nair, T. M. Wright, M. C. H. Van Der Meulen, and M. P. G. Bostrom. Cancellous bone osseointegration is enhanced by in vivo loading. Bone 16:1399–1406, 2010.

    CAS  Google Scholar 

  59. Wongwitwichot, P., J. Kaewsrichan, K. H. Chua, and B. H. I. Ruszymah. Comparison of TCP and TCP/HA hybrid scaffolds for osteoconductive activity. Open Biomed. Eng. J. 4:279–285, 2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Woodruff, M. A., and D. W. Hutmacher. The return of a forgotten polymer—polycaprolactone in the 21st century. Prog. Polym. Sci. 35:1217–1256, 2010.

    Article  CAS  Google Scholar 

  61. Wu, F., C. Liu, B. O’Neill, J. Wei, and Y. Ngothai. Fabrication and properties of porous scaffold of magnesium phosphate/polycaprolactone biocomposite for bone tissue engineering. Appl. Surf. Sci. 258:7589–7595, 2012.

    Article  CAS  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4