A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-013-0904-5 below:

Mechanochemitry: A Molecular Biomechanics View of Mechanosensing

  • Akiyoshi, B., et al. Tension directly stabilizes reconstituted kinetochore-microtubule attachments. Nature 468:576–579, 2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alberts, B. The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92:291–294, 1998.

    CAS  PubMed  Google Scholar 

  • Alon, R., D. A. Hammer, and T. A. Springer. Lifetime of the P-selectin: carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature 374:539–542, 1995.

    CAS  PubMed  Google Scholar 

  • Balaban, N. Q., et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3:466–472, 2001.

    CAS  PubMed  Google Scholar 

  • Barsegov, V., and D. Thirumalai. Dynamics of unbinding of cell adhesion molecules: transition from catch to slip bonds. Proc. Natl Acad. Sci. U.S.A. 102:1835–1839, 2005.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bartolo, D., I. Derenyi, and A. Ajdari. Dynamic response of adhesion complexes: beyond the single-path picture. Phys. Rev. E 65:051910, 2002.

    Google Scholar 

  • Bell, G. I. Models for the specific adhesion of cells to cells: a theoretical framework for adhesion mediated by reversible bonds between cell surface molecules. Science 200:618–627, 1978.

    CAS  PubMed  Google Scholar 

  • Bizzarri, A. R., and S. Cannistraro. Dynamic Force Spectroscopy and Biomolecular Recognition. CRC Press, Boca Raton, 2012.

  • Brooks, D. E., and T. J. Trust. Enhancement of bacterial adhesion by shear forces: characterization of the haemagglutination induced by Aeromonas salmonicida strain 438. J. Gen. Microbiol. 129:3661–3669, 1983.

    CAS  PubMed  Google Scholar 

  • Chan, C. E., and D. J. Odde. Traction dynamics of filopodia on compliant substrates. Science 322:1687–1691, 2008.

    CAS  PubMed  Google Scholar 

  • Chen, W., J. Lou, E. A. Evans, and C. Zhu. Observing force-regulated conformational changes and ligand dissociation from a single integrin on cells. J. Cell Biol. 199:497–512, 2012.

    CAS  PubMed  Google Scholar 

  • Chen, W., J. Lou, and C. Zhu. Forcing switch from short- to intermediate- and long-lived states of the alphaA domain generates LFA-1/ICAM-1 catch bonds. J. Biol. Chem. 285:35967–35978, 2010.

    CAS  PubMed  Google Scholar 

  • Chien, S., A. Yoganathan, and V. C. Mow. Cellular and molecular bioengineering: a new international Journal of the Biomedical Engineering Society. Cell. Mol. Bioeng. 1:1–3, 2008.

    Google Scholar 

  • Coste, B., et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60, 2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coste, B., et al. Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483:176–181, 2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  • del Rio, A., et al. Stretching single talin rod molecules activates vinculin binding. Science 323:638–641, 2009.

    PubMed  Google Scholar 

  • Delmas, P., J. Hao, and L. Rodat-Despoix. Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat. Rev. Neurosci. 12:139–153, 2011.

    CAS  PubMed  Google Scholar 

  • Dembo, M., D. C. Torney, K. Saxman, and D. Hammer. The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc. R. Soc. Lond. B 234:55–83, 1988.

    CAS  PubMed  Google Scholar 

  • Dudko, O. K., G. Hummer, and A. Szabo. Theory, analysis, and interpretation of single-molecule force spectroscopy experiments. Proc. Natl Acad. Sci. U.S.A. 105:15755–15760, 2008.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ebner, A., et al. In Handbook of Single-Molecule Biophysics, edited by P. Hinterdorfer and A. van Oijen. New York: Springer, 2009.

  • Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.

    CAS  PubMed  Google Scholar 

  • Evans, E., K. Kinoshita, S. Simon, and A. Leung. Long-lived, high-strength states of ICAM-1 bonds to beta2 integrin, I: lifetimes of bonds to recombinant alphaLbeta2 under force. Biophys. J. 98:1458–1466, 2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Evans, E., A. Leung, D. Hammer, and S. Simon. Chemically distinct transition states govern rapid dissociation of single L-selectin bonds under force. Proc. Natl. Acad. Sci. U.S.A. 98:3784–3789, 2001.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Evans, E., A. Leung, V. Heinrich, and C. Zhu. Mechanical switching and coupling between two dissociation pathways in a P-selectin adhesion bond. Proc. Natl Acad. Sci. U.S.A. 101:11281–11286, 2004.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Evans, E., and K. Ritchie. Dynamic strength of molecular adhesion bonds. Biophys. J. 72:1541–1555, 1997.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eyckmans, J., T. Boudou, X. Yu, and C. S. Chen. A hitchhiker’s guide to mechanobiology. Dev. Cell 21:35–47, 2011.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fang, Y., J. Wu, R. P. McEver, and C. Zhu. Bending rigidities of cell surface molecules P-selectin and PSGL-1. J. Biomech. 42:303–307, 2009.

    PubMed  Google Scholar 

  • Feng, J. J., et al. Direct visualisation and kinetic analysis of normal and nemaline myopathy actin polymerisation using total internal reflection microscopy. J. Muscle Res. Cell Motil. 30:85–92, 2009.

    PubMed  Google Scholar 

  • Finer, J. T., R. M. Simmons, and J. A. Spudich. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368:113–119, 1994.

    CAS  PubMed  Google Scholar 

  • Finger, E. B., et al. Adhesion through L-selectin requires a threshold hydrodynamic shear. Nature 379:266–269, 1996.

    CAS  PubMed  Google Scholar 

  • Fuhrmann, A., and R. Ros. Single-molecule force spectroscopy: a method for quantitative analysis of ligand-receptor interactions. Nanomedicine (Lond.) 5:657–666, 2010.

    CAS  Google Scholar 

  • Gardel, M. L., et al. Traction stress in focal adhesions correlates biphasically with actin retrograde flow speed. J. Cell Biol. 183:999–1005, 2008.

    CAS  PubMed  Google Scholar 

  • Giannone, G., et al. Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell 128:561–575, 2007.

    CAS  PubMed  Google Scholar 

  • Gittes, F., B. Mickey, J. Nettleton, and J. Howard. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120:923–934, 1993.

    CAS  PubMed  Google Scholar 

  • Gottlieb, P. A., and F. Sachs. Piezo1: properties of a cation selective mechanical channel. Channels 6:214–219, 2012.

    CAS  PubMed  Google Scholar 

  • Grashoff, C., et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466:263–266, 2010.

    Google Scholar 

  • Gunnerson, K. N., Y. V. Pereverzev, and O. V. Prezhdo. Atomistic simulation combined with analytic theory to study the response of the P-selectin/PSGL-1 complex to an external force. J. Phys. Chem. B 113:2090–2100, 2009.

    CAS  PubMed  Google Scholar 

  • Guo, B., and W. H. Guilford. Mechanics of actomyosin bonds in different nucleotide states are tuned to muscle contraction. Proc. Natl Acad. Sci. U.S.A. 103:9844–9849, 2006.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanley, W. D., D. Wirtz, and K. Konstantopoulos. Distinct kinetic and mechanical properties govern selectin-leukocyte interactions. J. Cell Sci. 117:2503–2511, 2004.

    CAS  PubMed  Google Scholar 

  • Hanley, W., et al. Single molecule characterization of P-selectin/ligand binding. J. Biol. Chem. 278:10556–10561, 2003.

    CAS  PubMed  Google Scholar 

  • Hoffman, B. D., et al. Dynamic molecular processes mediate cellular mechanotransduction. Nature 475:316–323, 2011.

    Google Scholar 

  • Holle, A. W., et al. In situ mechanotransduction via vinculin regulates stem cell differentiation. Stem Cells, 2013. doi:10.1002/stem.1490.

  • Hummer, G., and A. Szabo. Kinetics from nonequilibrium single-molecule pulling experiments. Biophys. J. 85:5–15, 2003.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Husson, J., and F. Pincet. Analyzing single-bond experiments: influence of the shape of the energy landscape and universal law between the width, depth, and force spectrum of the bond. Phys. Rev. E 77:026108, 2008.

    Google Scholar 

  • Ingber, D. E. Cellular mechanotransduction: putting all the pieces together again. FASEB J. 20:811–827, 2006.

    CAS  PubMed  Google Scholar 

  • Interlandi, G., and W. Thomas. The catch bond mechanism between von Willebrand factor and platelet surface receptors investigated by molecular dynamics simulations. Proteins 78:2506–2522, 2010.

    CAS  PubMed  Google Scholar 

  • Jin, M., I. Andricioaei, and T. A. Springer. Conversion between three conformational states of integrin I domains with a C-terminal pull spring studied with molecular dynamics. Structure 12:2137–2147, 2004.

    CAS  PubMed  Google Scholar 

  • Kang, Y., S. Lu, P. Ren, B. Huo, and M. Long. Molecular dynamics simulation of shear- and stretch-induced dissociation of P-selectin/PSGL-1 complex. Biophys. J. 102:112–120, 2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kellermayer, M. S., S. B. Smith, H. L. Granzier, and C. Bustamante. Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 276:1112–1116, 1997.

    CAS  PubMed  Google Scholar 

  • Kim, S. T., et al. The alphabeta T cell receptor is an anisotropic mechanosensor. J. Biol. Chem. 284:31028–31037, 2009.

    CAS  PubMed  Google Scholar 

  • Kim, S. T., et al. TCR mechanobiology: torques and tunable structures linked to early T cell signaling. Front. Immunol. 3:76, 2012. doi:10.3389/fimmu.2012.00076.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klotzsch, E., et al. Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites. Proc. Natl Acad. Sci. U.S.A. 106:18267–18272, 2009.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kong, F., A. J. Garcia, A. P. Mould, M. J. Humphries, and C. Zhu. Demonstration of catch bonds between an integrin and its ligand. J. Cell Biol. 185:1275–1284, 2009.

    CAS  PubMed  Google Scholar 

  • Kong, F., et al. Cyclic mechanical reinforcement of integrin-ligand interactions. Mol. Cell 49:1060–1068, 2013.

    CAS  PubMed  Google Scholar 

  • Laing, N. G., et al. Mutations and polymorphisms of the skeletal muscle alpha-actin gene (ACTA1). Hum. Mutat. 30:1267–1277, 2009.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lawrence, M. B., G. S. Kansas, E. J. Kunkel, and K. Ley. Threshold levels of fluid shear promote leukocyte adhesion through selectins (CD62L, P, E). J. Cell Biol. 136:717–727, 1997.

    CAS  PubMed  Google Scholar 

  • le Duc, Q., et al. Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner. J. Cell Biol. 189:1107–1115, 2010.

    PubMed  Google Scholar 

  • Le Trong, I., et al. Structural basis for mechanical force regulation of the adhesin FimH via finger trap-like beta sheet twisting. Cell 141:645–655, 2010.

    PubMed Central  PubMed  Google Scholar 

  • Lee, C., et al. Actin depolymerization under force is governed by lysine 113: glutamic acid 195-mediated catch-slip bonds. Proc. Natl Acad. Sci. U.S.A. 110:5022–5027, 2013.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li, Z. J., N. Mohamed, and J. M. Ross. Shear stress affects the kinetics of Staphylococcus aureus adhesion to collagen. Biotechnol. Prog. 16:1086–1090, 2000.

    CAS  PubMed  Google Scholar 

  • Li, F., S. D. Redick, H. P. Erickson, and V. T. Moy. Force measurements of the alpha5beta1 integrin-fibronectin interaction. Biophys. J. 84:1252–1262, 2003.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu, F., and Z. C. Ou-Yang. Force modulating dynamic disorder: a physical model of catch-slip bond transitions in receptor-ligand forced dissociation experiments. Phys. Rev. E 74:051904, 2006.

    Google Scholar 

  • Liu, F., Z. C. Ou-Yang, and M. Iwamoto. Dynamic disorder in receptor-ligand forced dissociation experiments. Phys. Rev. E 73:010901, 2006.

    Google Scholar 

  • Lou, J., and C. Zhu. A structure-based sliding-rebinding mechanism for catch bonds. Biophys. J. 92:1471–1485, 2007.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lou, J., et al. Flow-enhanced adhesion regulated by a selectin interdomain hinge. J. Cell Biol. 174:1107–1117, 2006.

    CAS  PubMed  Google Scholar 

  • Lu, S., Y. Zhang, and M. Long. Visualization of allostery in P-selectin lectin domain using MD simulations. PLoS ONE 5:e15417, 2010.

    PubMed Central  PubMed  Google Scholar 

  • Maroto, R., et al. TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat. Cell Biol. 7:179–185, 2005.

    CAS  PubMed  Google Scholar 

  • Marshall, B. T., K. K. Sarangapani, J. Lou, R. P. McEver, and C. Zhu. Force history dependence of receptor–ligand dissociation. Biophys. J. 88:1458–1466, 2005.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marshall, B. T., et al. Direct observation of catch bonds involving cell-adhesion molecules. Nature 423:190–193, 2003.

    CAS  PubMed  Google Scholar 

  • Marshall, B. T., et al. Measuring molecular elasticity by atomic force microscope cantilever fluctuations. Biophys. J. 90:681–692, 2006.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mazzucato, M., P. Pradella, M. R. Cozzi, L. De Marco, and Z. M. Ruggeri. Sequential cytoplasmic calcium signals in a 2-stage platelet activation process induced by the glycoprotein Ibalpha mechanoreceptor. Blood 100:2793–2800, 2002.

    CAS  PubMed  Google Scholar 

  • McEver, R. P., and C. Zhu. Rolling cell adhesion. Annu. Rev. Cell Dev. Biol. 26:363–396, 2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mehta, A. D., M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons. Single-molecule biomechanics with optical methods. Science 283:1689–1695, 1999.

    CAS  PubMed  Google Scholar 

  • Merkel, R., P. Nassoy, A. Leung, K. Ritchie, and E. Evans. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397:50–53, 1999.

    CAS  PubMed  Google Scholar 

  • Michael, K. E., D. W. Dumbauld, K. L. Burns, S. K. Hanks, and A. J. Garcia. Focal adhesion kinase modulates cell adhesion strengthening via integrin activation. Mol. Biol. Cell 20:2508–2519, 2009.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neuman, K. C., and A. Nagy. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5:491–505, 2008.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pereverzev, Y. V., and O. V. Prezhdo. Force-induced deformations and stability of biological bonds. Phys. Rev. E: Stat., Nonlin, Soft Matter Phys. 73:050902, 2006.

    Google Scholar 

  • Pereverzev, Y. V., and O. V. Prezhdo. Deformation model for thioredoxin catalysis of disulfide bond dissociation by force. Cell. Mol. Bioeng. 2:255–263, 2009.

    CAS  Google Scholar 

  • Pereverzev, Y. V., O. V. Prezhdo, M. Forero, E. V. Sokurenko, and W. E. Thomas. The two-pathway model for the catch-slip transition in biological adhesion. Biophys. J. 89:1446–1454, 2005.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pereverzev, Y. V., O. V. Prezhdo, and E. V. Sokurenko. Regulation of catch binding by allosteric transitions. J. Phys. Chem. B 114:11866–11874, 2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Phan, U. T., T. T. Waldron, and T. A. Springer. Remodeling of the lectin-EGF-like domain interface in P- and L-selectin increases adhesiveness and shear resistance under hydrodynamic force. Nat. Immunol. 7:883–889, 2006.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pilizota, T., Y. Sowa, and R. M. Berry. In Handbook of Single-Molecule Biophysics, edited by P. Hinterdorfer and A. van Oijen. New York: Springer, 2009.

  • Prezhdo, O. V., and Y. V. Pereverzev. Theoretical aspects of the biological catch bond. Acc. Chem. Res. 42:693–703, 2009.

    CAS  PubMed  Google Scholar 

  • Rakshit, S., Y. Zhang, K. Manibog, O. Shafraz, and S. Sivasankar. Ideal, catch, and slip bonds in cadherin adhesion. Proc. Natl Acad. Sci. U.S.A. 109:18815–18820, 2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rief, M., M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E. Gaub. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112, 1997.

    CAS  PubMed  Google Scholar 

  • Rief, M., F. Oesterhelt, B. Heymann, and H. E. Gaub. Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275:1295–1297, 1997.

    CAS  PubMed  Google Scholar 

  • Rinko, L. J., M. B. Lawrence, and W. H. Guilford. The molecular mechanics of P- and L-selectin lectin domains binding to PSGL-1. Biophys. J. 86:544–554, 2004.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanoudou, D., and A. H. Beggs. Clinical and genetic heterogeneity in nemaline myopathy—a disease of skeletal muscle thin filaments. Trends Mol. Med. 7:362–368, 2001.

    CAS  PubMed  Google Scholar 

  • Sarangapani, K. K., B. T. Marshall, R. P. McEver, and C. Zhu. Molecular stiffness of selectins. J. Biol. Chem. 286:9567–9576, 2011.

    CAS  PubMed  Google Scholar 

  • Sarangapani, K. K., et al. Low force decelerates L-selectin dissociation from P-selectin glycoprotein ligand-1 and endoglycan. J. Biol. Chem. 279:2291–2298, 2004.

    CAS  PubMed  Google Scholar 

  • Sarangapani, K. K., et al. Regulation of catch bonds by rate of force application. J. Biol. Chem. 286:32749–32761, 2011.

    CAS  PubMed  Google Scholar 

  • Savage, B., E. Saldivar, and Z. M. Ruggeri. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 84:289–297, 1996.

    CAS  PubMed  Google Scholar 

  • Scheuring, S., K. T. Sapra, and D. J. Muller. In Handbook of Single-Molecule Biophysics, edited by P. Hinterdorfer and A. van Oijen. New York: Springer, 2009.

  • Schlierf, M., and M. Rief. Single-molecule manipulation using optical traps. In: Handbook of Single-Molecule Biophysics, edited by P. Hinterdorfer, and A. Oijen. New York: Springer, 2009, pp. 397–406.

    Google Scholar 

  • Shimaoka, M., et al. Structures of the alpha L I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation. Cell 112:99–111, 2003.

    CAS  PubMed  Google Scholar 

  • Springer, T. A. Structural basis for selectin mechanochemistry. Proc. Natl Acad. Sci. U.S.A. 106:91–96, 2009.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sukharev, S., M. Betanzos, C. S. Chiang, and H. R. Guy. The gating mechanism of the large mechanosensitive channel MscL. Nature 409:720–724, 2001.

    CAS  PubMed  Google Scholar 

  • Sun, Z. J., K. S. Kim, G. Wagner, and E. L. Reinherz. Mechanisms contributing to T cell receptor signaling and assembly revealed by the solution structure of an ectodomain fragment of the CD3 epsilon gamma heterodimer. Cell 105:913–923, 2001.

    CAS  PubMed  Google Scholar 

  • Tchesnokova, V., et al. Integrin-like allosteric properties of the catch bond-forming FimH adhesin of Escherichia coli. J. Biol. Chem. 283:7823–7833, 2008.

    CAS  PubMed  Google Scholar 

  • Thomas, W. E., E. Trintchina, M. Forero, V. Vogel, and E. V. Sokurenko. Bacterial adhesion to target cells enhanced by shear force. Cell 109:913–923, 2002.

    CAS  PubMed  Google Scholar 

  • Thomas, W. E., V. Vogel, and E. Sokurenko. Biophysics of catch bonds. Annu. Rev. Biophys. 37:399–416, 2008.

    CAS  PubMed  Google Scholar 

  • Thomas, W., et al. Catch-bond model derived from allostery explains force-activated bacterial adhesion. Biophys. J. 90:753–764, 2006.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tskhovrebova, L., J. Trinick, J. A. Sleep, and R. M. Simmons. Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 387:308–312, 1997.

    CAS  PubMed  Google Scholar 

  • Wayman, A. M., W. Chen, R. P. McEver, and C. Zhu. Triphasic force dependence of E-selectin/ligand dissociation governs cell rolling under flow. Biophys. J. 99:1166–1174, 2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wei, Y. Entropic-elasticity-controlled dissociation and energetic-elasticity-controlled rupture induce catch-to-slip bonds in cell-adhesion molecules. Phys. Rev. E 77:031910, 2008.

    Google Scholar 

  • Wiita, A. P., et al. Probing the chemistry of thioredoxin catalysis with force. Nature 450:124–127, 2007.

    CAS  PubMed  Google Scholar 

  • Wu, T., J. Lin, M. A. Cruz, J. F. Dong, and C. Zhu. Force-induced cleavage of single VWFA1A2A3 tridomains by ADAMTS-13. Blood 115:370–378, 2010.

    CAS  PubMed  Google Scholar 

  • Xiang, X., et al. Structural basis and kinetics of force-induced conformational changes of an alphaA domain-containing integrin. PLoS ONE 6:e27946, 2011.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yago, T., et al. Catch bonds govern adhesion through L-selectin at threshold shear. J. Cell Biol. 166:913–923, 2004.

    CAS  PubMed  Google Scholar 

  • Yago, T., et al. Platelet glycoprotein Ibalpha forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF. J. Clin. Invest. 118:3195–3207, 2008.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yakovenko, O., et al. FimH forms catch bonds that are enhanced by mechanical force due to allosteric regulation. J. Biol. Chem. 283:11596–11605, 2008.

    CAS  PubMed  Google Scholar 

  • Yan, Z., et al. Drosophila NOMPC is a mechanotransduction channel subunit for gentle-touch sensation. Nature 493:221–225, 2013.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang, X., K. Halvorsen, C. Z. Zhang, W. P. Wong, and T. A. Springer. Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand factor. Science 324:1330–1334, 2009.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang, X., E. Wojcikiewicz, and V. T. Moy. Force spectroscopy of the leukocyte function-associated antigen-1/intercellular adhesion molecule-1 interaction. Biophys. J. 83:2270–2279, 2002.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu, C., J. Lou, and R. P. McEver. Catch bonds: physical models, structural bases, biological function and rheological relevance. Biorheology 42:443–462, 2005.

    CAS  PubMed  Google Scholar 

  • Zhu, C., T. Yago, J. Lou, V. I. Zarnitsyna, and R. P. McEver. Mechanisms for flow-enhanced cell adhesion. Ann. Biomed. Eng. 36:604–621, 2008.

    PubMed Central  PubMed  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4