Alejandro, R., F. B. Barton, B. J. Hering, and S. Wease. 2008 Update from the collaborative islet transplant registry. Transplantation 86:1783–1788, 2008.
Almeda, F. Q., R. J. Snell, and J. E. Parrillo. The contemporary management of acute myocardial infarction. Crit. Care Clin. 17:411–434, 2001.
Anversa, P., J. Kajstura, M. Rota, and A. Leri. Regenerating new heart with stem cells. J. Clin. Invest. 123:62–70, 2013.
Barshes, N. R., S. Wyllie, and J. A. Goss. Inflammation-mediated dysfunction and apoptosis in pancreatic islet transplantation: implications for intrahepatic grafts. J. Leukoc. Biol. 77:587–597, 2005.
Barton, F. B., M. R. Rickels, R. Alejandro, B. J. Hering, S. Wease, B. Naziruddin, J. Oberholzer, J. S. Odorico, M. R. Garfinkel, M. Levy, F. Pattou, T. Berney, A. Secchi, S. Messinger, P. A. Senior, P. Maffi, A. Posselt, P. G. Stock, D. B. Kaufman, X. Luo, F. Kandeel, E. Cagliero, N. A. Turgeon, P. Witkowski, A. Naji, P. J. O’Connell, C. Greenbaum, Y. C. Kudva, K. L. Brayman, M. J. Aull, C. Larsen, T. W. Kay, L. A. Fernandez, M. C. Vantyghem, M. Bellin, and A. M. Shapiro. Improvement in outcomes of clinical islet transplantation: 1999–2010. Diabetes Care 35:1436–1445, 2012.
Brady, A. C., M. M. Martino, E. Pedraza, S. Sukert, A. Pileggi, R. Camillo, J. Hubbell, and C. Stabler. l. Tissue Eng Part A: Pro-angiogenic hydrogels within macroporous scaffolds enhances islet engraftment in an extrahepatic site, 2013.
Carmeliet, P., and R. K. Jain. Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307, 2011.
Cheng, K., D. Fraga, C. Zhang, M. Kotb, A. O. Gaber, R. V. Guntaka, and R. I. Mahato. Adenovirus-based vascular endothelial growth factor gene delivery to human pancreatic islets. Gene Ther. 11:1105–1116, 2004.
Cheng, K., T. S. Li, K. Malliaras, D. R. Davis, Y. Zhang, and E. Marban. Magnetic targeting enhances engraftment and functional benefit of iron-labeled cardiosphere-derived cells in myocardial infarction. Circ. Res. 106:1570–1581, 2010.
Cheng, Y., Y. F. Liu, J. L. Zhang, T. M. Li, and N. Zhao. Elevation of vascular endothelial growth factor production and its effect on revascularization and function of graft islets in diabetic rats. World J. Gastroenterol. 13:2862–2866, 2007.
Chiu, L. L., L. A. Reis, A. Momen, and M. Radisic. Controlled release of thymosin beta4 from injected collagen-chitosan hydrogels promotes angiogenesis and prevents tissue loss after myocardial infarction. Regen. Med. 7:523–533, 2012.
Chung, I. M., N. O. Enemchukwu, S. D. Khaja, N. Murthy, A. Mantalaris, and A. J. Garcia. Bioadhesive hydrogel microenvironments to modulate epithelial morphogenesis. Biomaterials 29:2637–2645, 2008.
Cittadini, A., M. G. Monti, V. Petrillo, G. Esposito, G. Imparato, A. Luciani, F. Urciuolo, E. Bobbio, C. F. Natale, L. Sacca, and P. A. Netti. Complementary therapeutic effects of dual delivery of insulin-like growth factor-1 and vascular endothelial growth factor by gelatin microspheres in experimental heart failure. Eur. J. Heart Fail. 13:1264–1274, 2011.
Davis, M. E., P. C. Hsieh, T. Takahashi, Q. Song, S. Zhang, R. D. Kamm, A. J. Grodzinsky, P. Anversa, and R. T. Lee. Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc. Natl. Acad. Sci. U.S.A. 103:8155–8160, 2006.
Elbert, D. L., and J. A. Hubbell. Conjugate addition reactions combined with free-radical cross-linking for the design of materials for tissue engineering. Biomacromolecules 2:430–441, 2001.
Emamaullee, J. A., and A. M. Shapiro. Factors influencing the loss of beta-cell mass in islet transplantation. Cell Transplant. 16:1–8, 2007.
Engel, F. B., P. C. Hsieh, R. T. Lee, and M. T. Keating. FGF1/p38 map kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc. Natl. Acad. Sci. U.S.A. 103:15546–15551, 2006.
Ferrara, N. Vascular endothelial growth factor. Arterioscler. Thromb. Vasc. Biol. 29:789–791, 2009.
Fiorina, P., A. M. Shapiro, C. Ricordi, and A. Secchi. The clinical impact of islet transplantation. Am. J. Transplant. 8:1990–1997, 2008.
Fu, Y., and W. J. Kao. In situ forming poly(ethylene glycol)-based hydrogels via thiol-maleimide Michael-type addition. J. Biomed. Mater. Res. A 98:201–211, 2011.
Garbern, J. C., E. Minami, P. S. Stayton, and C. E. Murry. Delivery of basic fibroblast growth factor with a pH-responsive, injectable hydrogel to improve angiogenesis in infarcted myocardium. Biomaterials 32:2407–2416, 2011.
Hahn, M. S., J. S. Miller, and J. L. West. Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Adv. Mater. 18:2679–2684, 2006.
Hiemstra, C., L. J. van der Aa, Z. Zhong, P. J. Dijkstra, and J. Feijen. Novel in situ forming, degradable dextran hydrogels by michael addition chemistry: synthesis, rheology, and degradation. Macromolecules 40:1165–1173, 2007.
Hiemstra, C., L. J. van der Aa, Z. Zhong, P. J. Dijkstra, and J. Feijen. Rapidly in situ-forming degradable hydrogels from dextran thiols through Michael addition. Biomacromolecules 8:1548–1556, 2007.
Hiscox, A. M., A. L. Stone, S. Limesand, J. B. Hoying, and S. K. Williams. An islet-stabilizing implant constructed using a preformed vasculature. Tissue Eng. Part A 14:433–440, 2008.
Hou, J., L. Wang, J. Jiang, C. Zhou, T. Guo, S. Zheng, and T. Wang. Cardiac stem cells and their roles in myocardial infarction. Stem Cell Rev. 9:326–338, 2013.
Hou, D., E. A. Youssef, T. J. Brinton, P. Zhang, P. Rogers, E. T. Price, A. C. Yeung, B. H. Johnstone, P. G. Yock, and K. L. March. Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation 112:I150–I156, 2005.
Hsieh, P. C., M. E. Davis, J. Gannon, C. MacGillivray, and R. T. Lee. Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. J. Clin. Invest. 116:237–248, 2006.
Hu, B.-H., J. Su, and P. B. Messersmith. Hydrogels cross-linked by native chemical ligation. Biomacromolecules 10:2194–2200, 2009.
Hubbell, J. A., S. N. Thomas, and M. A. Swartz. Materials engineering for immunomodulation. Nature 462:449–460, 2009.
Hunt, N. C., R. M. Shelton, D. J. Henderson, and L. M. Grover. Calcium-alginate hydrogel-encapsulated fibroblasts provide sustained release of vascular endothelial growth factor. Tissue Eng. Part A 19:905–914, 2013.
Ifkovits, J. L., E. Tous, M. Minakawa, M. Morita, J. D. Robb, K. J. Koomalsingh, J. H. Gorman, 3rd, R. C. Gorman, and J. A. Burdick. Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model. Proc. Natl. Acad. Sci. U.S.A. 107:11507–11512, 2010.
Johnson, T. D., and K. L. Christman. Injectable hydrogel therapies and their delivery strategies for treating myocardial infarction. Expert Opin. Drug Deliv. 10:59–72, 2013.
Kim, J., B. K. Wacker, and D. L. Elbert. Thin polymer layers formed using multiarm poly(ethylene glycol) vinylsulfone by a covalent layer-by-layer method. Biomacromolecules 8:3682–3686, 2007.
Kloxin, A. M., M. W. Tibbitt, and K. S. Anseth. Synthesis of photodegradable hydrogels as dynamically tunable cell culture platforms. Nat. Protoc. 5:1867–1887, 2010.
Kopecek, J., and J. Yang. Smart self-assembled hybrid hydrogel biomaterials. Angew. Chem. Int. Ed. Engl. 51:7396–7417, 2012.
Lakey, J. R., M. Mirbolooki, and A. M. Shapiro. Current status of clinical islet cell transplantation. Methods Mol. Biol. 333:47–104, 2006.
Leader, B., Q. J. Baca, and D. E. Golan. Protein therapeutics: a summary and pharmacological classification. Nat. Rev. Drug Discovery 7:21–39, 2008.
Leslie-Barbick, J. E., J. E. Saik, D. J. Gould, M. E. Dickinson, and J. L. West. The promotion of microvasculature formation in poly(ethylene glycol) diacrylate hydrogels by an immobilized VEGF-mimetic peptide. Biomaterials 32:5782–5789, 2011.
Li, X. Y., T. Wang, X. J. Jiang, T. Lin, D. Q. Wu, X. Z. Zhang, E. Okello, H. X. Xu, and M. J. Yuan. Injectable hydrogel helps bone marrow-derived mononuclear cells restore infarcted myocardium. Cardiology 115:194–199, 2010.
Lin, C. C., and K. S. Anseth. Peg hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm. Res. 26:631–643, 2009.
Lin, C. C., and A. T. Metters. Hydrogels in controlled release formulations: network design and mathematical modeling. Adv. Drug Deliv. Rev. 58:1379–1408, 2006.
Linn, T., J. Schmitz, I. Hauck-Schmalenberger, Y. Lai, R. G. Bretzel, H. Brandhorst, and D. Brandhorst. Ischaemia is linked to inflammation and induction of angiogenesis in pancreatic islets. Clin. Exp. Immunol. 144:179–187, 2006.
Liu, Z., H. Wang, Y. Wang, Q. Lin, A. Yao, F. Cao, D. Li, J. Zhou, C. Duan, Z. Du, and C. Wang. The influence of chitosan hydrogel on stem cell engraftment, survival and homing in the ischemic myocardial microenvironment. Biomaterials 33:3093–3106, 2012.
Lutolf, M. P., P. M. Gilbert, and H. M. Blau. Designing materials to direct stem-cell fate. Nature 462:433–441, 2009.
Lutolf, M. P., and J. A. Hubbell. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23:47–55, 2005.
Malliaras, K., M. Kreke, and E. Marban. The stuttering progress of cell therapy for heart disease. Clin. Pharmacol. Ther. 90:532–541, 2011.
Mark Saltzman, W., and S. P. Baldwin. Materials for protein delivery in tissue engineering. Adv. Drug Deliv. Rev. 33:71–86, 1998.
Mathieu, E., G. Lamirault, C. Toquet, P. Lhommet, E. Rederstorff, S. Sourice, K. Biteau, P. Hulin, V. Forest, P. Weiss, J. Guicheux, and P. Lemarchand. Intramyocardial delivery of mesenchymal stem cell-seeded hydrogel preserves cardiac function and attenuates ventricular remodeling after myocardial infarction. PLoS ONE 7:e51991, 2012.
Mehta, M., K. Schmidt-Bleek, G. N. Duda, and D. J. Mooney. Biomaterial delivery of morphogens to mimic the natural healing cascade in bone. Adv. Drug Deliv. Rev. 64:1257–1276, 2012.
Narang, A. S., K. Cheng, J. Henry, C. Zhang, O. Sabek, D. Fraga, M. Kotb, A. O. Gaber, and R. I. Mahato. Vascular endothelial growth factor gene delivery for revascularization in transplanted human islets. Pharm. Res. 21:15–25, 2004.
Narang, A. S., and R. I. Mahato. Biological and biomaterial approaches for improved islet transplantation. Pharmacol. Rev. 58:194–243, 2006.
National Diabetes Fact Sheet. Centers for Disease Control and Prevention, 2005.
Pashuck, E. T., and M. M. Stevens. Designing regenerative biomaterial therapies for the clinic. Sci. Transl. Med. 4:160sr4, 2012.
Peppas, N. A., J. Z. Hilt, A. Khademhosseini, and R. Langer. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18:1345–1360, 2006.
Peppas, N. A., Y. Huang, M. Torres-Lugo, J. H. Ward, and J. Zhang. Physicochemical, foundations and structural design of hydrogels in medicine and biology. Annu. Rev. Biomed. Eng. 2:9–29, 2000.
Phelps, E. A., N. O. Enemchukwu, V. F. Fiore, J. C. Sy, N. Murthy, T. A. Sulchek, T. H. Barker, and A. J. Garcia. Maleimide cross-linked bioactive peg hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in situ delivery. Adv. Mater. 24:64–70, 2012.
Phelps, E. A., D. M. Headen, W. R. Taylor, P. M. Thule, and A. J. Garcia. Vasculogenic bio-synthetic hydrogel for enhancement of pancreatic islet engraftment and function in type 1 diabetes. Biomaterials 34:4602–4611, 2013.
Phelps, E. A., N. Landazuri, P. M. Thule, W. R. Taylor, and A. J. García. Bioartificial matrices for therapeutic vascularization. Proc. Natl. Acad. Sci. U.S.A. 107:3323–3328, 2010.
Phelps, E. A., Templeman K. L. , P. M. Thule, and A. J. Garcia. Engineered VEGF-releasing PEG–MAL hydrogel for pancreatic islet vascularization. Drug Deliv. Transl. Res. 2013. doi:10.1007/s13346-013-0142-2.
Prokoph, S., E. Chavakis, K. R. Levental, A. Zieris, U. Freudenberg, S. Dimmeler, and C. Werner. Sustained delivery of SDF-1alpha from heparin-based hydrogels to attract circulating pro-angiogenic cells. Biomaterials 33:4792–4800, 2012.
Quevedo, H. C., K. E. Hatzistergos, B. N. Oskouei, G. S. Feigenbaum, J. E. Rodriguez, D. Valdes, P. M. Pattany, J. P. Zambrano, Q. Hu, I. McNiece, A. W. Heldman, and J. M. Hare. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc. Natl. Acad. Sci. U.S.A. 106:14022–14027, 2009.
Ren, G., X. Chen, F. Dong, W. Li, X. Ren, Y. Zhang, and Y. Shi. Concise review: mesenchymal stem cells and translational medicine: emerging issues. Stem Cells Transl. Med. 1:51–58, 2012.
Rice, J. J., M. M. Martino, L. De Laporte, F. Tortelli, P. S. Briquez, and J. A. Hubbell. Engineering the regenerative microenvironment with biomaterials. Adv. Healthc. Mater. 2:57–71, 2013.
Rizzi, S. C., M. Ehrbar, S. Halstenberg, G. P. Raeber, H. G. Schmoekel, H. Hagenmuller, R. Muller, F. E. Weber, and J. A. Hubbell. Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part II: Biofunctional characteristics. Biomacromolecules 7:3019–3029, 2006.
Rizzi, S. C., and J. A. Hubbell. Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part I: Development and physicochemical characteristics. Biomacromolecules 6:1226–1238, 2005.
Robertson, R. P. Islet transplantation as a treatment for diabetes—a work in progress. N. Engl. J. Med. 350:694–705, 2004.
Roger, V. L., A. S. Go, D. M. Lloyd-Jones, E. J. Benjamin, J. D. Berry, W. B. Borden, D. M. Bravata, S. Dai, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, S. M. Hailpern, J. A. Heit, V. J. Howard, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, E. Z. Soliman, P. D. Sorlie, N. Sotoodehnia, T. N. Turan, S. S. Virani, N. D. Wong, D. Woo, and M. B. Turner. Heart disease and stroke statistics—2012 update: a report from the american heart association. Circulation 125:e2–e220, 2012.
Salimath, A. S., E. A. Phelps, A. V. Boopathy, P. L. Che, M. Brown, A. J. Garcia, and M. E. Davis. Dual delivery of hepatocyte and vascular endothelial growth factors via a protease-degradable hydrogel improves cardiac function in rats. PLoS ONE 7:e50980, 2012.
Sawhney, A. S., C. P. Pathak, and J. A. Hubbell. Modification of islet of langerhans surfaces with immunoprotective poly(ethylene glycol) coatings via interfacial photopolymerization. Biotechnol. Bioeng. 44:383–386, 1994.
Schmidt, J. J., J. Rowley, and H. J. Kong. Hydrogels used for cell-based drug delivery. J. Biomed. Mater. Res. A 87:1113–1122, 2008.
Seif-Naraghi, S. B., J. M. Singelyn, M. A. Salvatore, K. G. Osborn, J. J. Wang, U. Sampat, O. L. Kwan, G. M. Strachan, J. Wong, P. J. Schup-Magoffin, R. L. Braden, K. Bartels, J. A. DeQuach, M. Preul, A. M. Kinsey, A. N. DeMaria, N. Dib, and K. L. Christman. Safety and efficacy of an injectable extracellular matrix hydrogel for treating myocardial infarction. Sci. Transl. Med. 5:173, 2013.
Seliktar, D. Designing cell-compatible hydrogels for biomedical applications. Science 336:1124–1128, 2012.
Seliktar, D., A. H. Zisch, M. P. Lutolf, J. L. Wrana, and J. A. Hubbell. MMP-2 sensitive, VEGF-bearing bioactive hydrogels for promotion of vascular healing. J. Biomed. Mater. Res. A 68:704–716, 2004.
Shapiro, A. M., C. Ricordi, B. J. Hering, H. Auchincloss, R. Lindblad, R. P. Robertson, A. Secchi, M. D. Brendel, T. Berney, D. C. Brennan, E. Cagliero, R. Alejandro, E. A. Ryan, B. DiMercurio, P. Morel, K. S. Polonsky, J. A. Reems, R. G. Bretzel, F. Bertuzzi, T. Froud, R. Kandaswamy, D. E. Sutherland, G. Eisenbarth, M. Segal, J. Preiksaitis, G. S. Korbutt, F. B. Barton, L. Viviano, V. Seyfert-Margolis, J. Bluestone, and J. R. Lakey. International trial of the Edmonton protocol for islet transplantation. N. Engl. J. Med. 355:1318–1330, 2006.
Shikanov, A., R. M. Smith, M. Xu, T. K. Woodruff, and L. D. Shea. Hydrogel network design using multifunctional macromers to coordinate tissue maturation in ovarian follicle culture. Biomaterials 32:2524–2531, 2011.
Sigrist, S., A. Mechine-Neuville, K. Mandes, V. Calenda, S. Braun, G. Legeay, J. P. Bellocq, M. Pinget, and L. Kessler. Influence of VEGF on the viability of encapsulated pancreatic rat islets after transplantation in diabetic mice. Cell Transplant. 12:627–635, 2003.
Singelyn, J. M., P. Sundaramurthy, T. D. Johnson, P. J. Schup-Magoffin, D. P. Hu, D. M. Faulk, J. Wang, K. M. Mayle, K. Bartels, M. Salvatore, A. M. Kinsey, A. N. Demaria, N. Dib, and K. L. Christman. Catheter-deliverable hydrogel derived from decellularized ventricular extracellular matrix increases endogenous cardiomyocytes and preserves cardiac function post-myocardial infarction. J. Am. Coll. Cardiol. 59:751–763, 2012.
Smith, R. R., E. Marban, and L. Marban. Enhancing retention and efficacy of cardiosphere-derived cells administered after myocardial infarction using a hyaluronan-gelatin hydrogel. Biomatter 3, 2013.
Stabenfeldt, S. E., G. Munglani, A. J. Garcia, and M. C. LaPlaca. Biomimetic microenvironment modulates neural stem cell survival, migration, and differentiation. Tissue Eng. Part A 16:3747–3758, 2010.
Stabler, C. L., X. L. Sun, W. Cui, J. T. Wilson, C. A. Haller, and E. L. Chaikof. Surface re-engineering of pancreatic islets with recombinant azido-thrombomodulin. Bioconjug. Chem. 18:1713–1715, 2007.
Stendahl, J. C., D. B. Kaufman, and S. I. Stupp. Extracellular matrix in pancreatic islets: relevance to scaffold design and transplantation. Cell Transplant. 18:1–12, 2009.
Stendahl, J. C., L. J. Wang, L. W. Chow, D. B. Kaufman, and S. I. Stupp. Growth factor delivery from self-assembling nanofibers to facilitate islet transplantation. Transplantation 86:478–481, 2008.
Su, J., B.-H. Hu, W. L. Lowe, Jr., D. B. Kaufman, and P. B. Messersmith. Anti-inflammatory peptide-functionalized hydrogels for insulin-secreting cell encapsulation. Biomaterials 31:308–314, 2010.
Terrovitis, J., R. Lautamaki, M. Bonios, J. Fox, J. M. Engles, J. Yu, M. K. Leppo, M. G. Pomper, R. L. Wahl, J. Seidel, B. M. Tsui, F. M. Bengel, M. R. Abraham, and E. Marban. Noninvasive quantification and optimization of acute cell retention by in vivo positron emission tomography after intramyocardial cardiac-derived stem cell delivery. J. Am. Coll. Cardiol. 54:1619–1626, 2009.
Tous, E., J. L. Ifkovits, K. J. Koomalsingh, T. Shuto, T. Soeda, N. Kondo, J. H. Gorman, 3rd, R. C. Gorman, and J. A. Burdick. Influence of injectable hyaluronic acid hydrogel degradation behavior on infarction-induced ventricular remodeling. Biomacromolecules 12:4127–4135, 2011.
Tsur-Gang, O., E. Ruvinov, N. Landa, R. Holbova, M. S. Feinberg, J. Leor, and S. Cohen. The effects of peptide-based modification of alginate on left ventricular remodeling and function after myocardial infarction. Biomaterials 30:189–195, 2009.
Vaithilingam, V., G. Sundaram, and B. E. Tuch. Islet cell transplantation. Curr. Opin. Organ Transplant. 13:633–638, 2008.
Wall, S. T., C. C. Yeh, R. Y. Tu, M. J. Mann, and K. E. Healy. Biomimetic matrices for myocardial stabilization and stem cell transplantation. J. Biomed. Mater. Res. A 95:1055–1066, 2010.
Weber, L. M., and K. S. Anseth. Hydrogel encapsulation environments functionalized with extracellular matrix interactions increase islet insulin secretion. Matrix Biol. 27:667–673, 2008.
Weber, L. M., C. Y. Cheung, and K. S. Anseth. Multifunctional pancreatic islet encapsulation barriers achieved via multilayer peg hydrogels. Cell Transplant. 16:1049–1057, 2008.
Wilson, J. T., W. Cui, and E. L. Chaikof. Layer-by-layer assembly of a conformal nanothin PEG coating for intraportal islet transplantation. Nano Lett. 8:1940–1948, 2008.
Yu, H., Z.-G. Feng, A.-Y. Zhang, L.-G. Sun, and L. Qian. Synthesis and characterization of three-dimensional crosslinked networks based on self-assembly of α-cyclodextrins with thiolated 4-arm PEG using a three-step oxidation. Soft Matter 2:343, 2006.
Yu, J., Y. Gu, K. T. Du, S. Mihardja, R. E. Sievers, and R. J. Lee. The effect of injected RGD modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model. Biomaterials 30:751–756, 2009.
Yun, L. D., N. J. Hee, and Y. Byun. Functional and histological evaluation of transplanted pancreatic islets immunoprotected by PEGylation and cyclosporine for 1 year. Biomaterials 28:1957–1966, 2007.
Zhu, J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 31:4639–4656, 2010.
Zisch, A. H., M. P. Lutolf, M. Ehrbar, G. P. Raeber, S. C. Rizzi, N. Davies, H. Schmokel, D. Bezuidenhout, V. Djonov, P. Zilla, and J. A. Hubbell. Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. FASEB J. 17:2260–2262, 2003.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4