A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-013-0828-0 below:

Cerebral Microcirculation and Oxygen Tension in the Human Secondary Cortex

References
  1. Aroesty, J., and J. F. Gross. The mathematics of pulsatile flow in small vessels. I. Casson theory. Microvasc. Res. 4:1–12, 1972.

    Article  CAS  PubMed  Google Scholar 

  2. Behera, D. Textbook of Pulmonary Medicine. Jaypee Brothers Medical Pub, 2010.

  3. Blinder, P., A. Y. Shih, C. Rafie, and D. Kleinfeld. Topological basis for the robust distribution of blood to rodent neocortex. Proc. Natl Acad. Sci. USA. 107:12670–12675, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boas, D. A., S. R. Jones, A. Devor, T. J. Huppert, and A. M. Dale. A vascular anatomical network model of the spatio-temporal response to brain activation. NeuroImage 40:1116–1129, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cassot, F., F. Lauwers, C. Fouard, S. Prohaska, and V. Lauwers-Cances. A novel three-dimensional computer-assisted method for a quantitative study of microvascular networks of the human cerebral cortex. Microcirculation 13:1–18, 2006.

    Article  CAS  PubMed  Google Scholar 

  6. Cassot, F., F. Lauwers, S. Lorthois, P. Puwanarajah, V. Cances-Lauwers, and H. Duvernoy. Branching patterns for arterioles and venules of the human cerebral cortex. Brain Res. 1313:62–78, 2010.

    Article  CAS  PubMed  Google Scholar 

  7. Cassot, F., F. Lauwers, S. Lorthois, P. Puwanarajah, and H. Duvernoy. Scaling laws for branching vessels of human cerebral cortex. Microcirculation 16:331–344, 2 p following 344, May 2009.

    Google Scholar 

  8. Delaunay, B. Sur la sphere vide. Bull. Acad. Science USSR VII: Class Sci. Mat., pp. 793–800, 1934.

  9. Devor, A., S. Sakadzic, P. A. Saisan, M. A. Yaseen, E. Roussakis, V. J. Srinivasan, S. A. Vinogradov, B. R. Rosen, R. B. Buxton, A. M. Dale, and D. A. Boas. “Overshoot” of O(2) is required to maintain baseline tissue oxygenation at locations distal to blood vessels. J. Neurosci. 31:13676–13681, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Duff, I. S., and J. K. Reid. The design of MA48: A code for the direct solution of sparse unsymmetric linear systems of equations. ACM Trans. Math. Softw. 22:187–226, 1996.

    Article  Google Scholar 

  11. Duong, T. Q., and S. G. Kim. In vivo MR measurements of regional arterial and venous blood volume fractions in intact rat brain. Magnetic Resonance in Medicine 43:393–402, 2000.

    Article  CAS  PubMed  Google Scholar 

  12. Duvernoy, H. M., S. Delon, and J. L. Vannson. Cortical blood vessels of the human brain. Brain Research Bulletin 7:519–579, 1981.

    Article  CAS  PubMed  Google Scholar 

  13. Espagno, J., L. Arbus, A. Bes, R. Billet, A. Gouaze, Ph. Frerebeau, Y. Lazorthes, G. Salamon, J. Seylaz, and B. Vlahovitch. La circulation cerebrale. Neuro-Chirurgie, 15, 1969.

  14. Fang, Q., S. Sakadzic, L. Ruvinskaya, A. Devor, A. M. Dale, and D. A. Boas. Oxygen advection and diffusion in a three- dimensional vascular anatomical network. Optics Express 16:17530–17541, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fletcher, J. Mathematical modeling of the microcirculation. Mathematical Biosciences 38:159–202, 1978.

    Article  Google Scholar 

  16. Fung, Y. C., and B. W. Zweifach. Microcirculation—mechanics of blood flow in capillaries. Annu. Rev. Fluid Mech. 3:189–&, 1971.

    Google Scholar 

  17. Gjedde, A., H. Kuwabara, and A. M. Hakim. Reduction of functional capillary density in human brain after stroke. Journal of Cerebral Blood Flow and Metabolism 10:317–326, 1990.

    Article  CAS  PubMed  Google Scholar 

  18. Goldman, D., and A. S. Popel. A computational study of the effect of capillary network anastomoses and tortuosity on oxygen transport. Journal of Theoretical Biology 206:181–194, 2000.

    Article  CAS  PubMed  Google Scholar 

  19. Gould, I. G., T. Marinnan, C. Maurice, M. Qader, B. Henry, M. Pervais, N. Vaicaitis, Y. Zhu, A. Rogers, and A. A. Linninger. Hemodynamics of cerebral vasculature. Presented at the Proceedings of the 11th International Symposium on Process Systems Engineering, Singapore, 2012.

  20. Guibert, R., C. Fonta, and F. Plouraboue. Cerebral blood flow modeling in primate cortex. Journal of Cerebral Blood Flow and Metabolism 30:1860–1873, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Guibert, R., C. Fonta, and F. Plouraboue. A new approach to model confined suspensions flows in complex networks: application to blood flow. Transport in Porous Media 83:171–194, 2010.

    Article  CAS  Google Scholar 

  22. Guibert, R., C. Fonta, L. Risser, and F. Plouraboue. Coupling and robustness of intra-cortical vascular territories. NeuroImage 62:408–417, 2012.

    Article  PubMed  Google Scholar 

  23. Hill, A. V. The combinations of haemoglobin with oxygen and with carbon monoxide. I. Biochem J 7:471–480, 1913.

    Article  CAS  PubMed  Google Scholar 

  24. Hirsch, S., J. Reichold, M. Schneider, G. Szekely, and B. Weber. Topology and hemodynamics of the cortical cerebrovascular system. Journal of Cerebral Blood Flow and Metabolism 32:952–967, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hsu, R., and T. W. Secomb. A Green’s function method for analysis of oxygen delivery to tissue by microvascular networks. Mathematical Biosciences 96:61–78, 1989.

    Article  CAS  PubMed  Google Scholar 

  26. Hunziker, O., H. Frey, and U. Schulz. Morphometric investigations of capillaries in the brain cortex of the cat. Brain Research 65:1–11, 1974.

    Article  CAS  PubMed  Google Scholar 

  27. Huppert, T. J., M. S. Allen, H. Benav, P. B. Jones, and D. A. Boas. A multicompartment vascular model for inferring baseline and functional changes in cerebral oxygen metabolism and arterial dilation. Journal of Cerebral Blood Flow and Metabolism 27:1262–1279, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ito, H., I. Kanno, H. Iida, J. Hatazawa, E. Shimosegawa, H. Tamura, and T. Okudera. Arterial fraction of cerebral blood volume in humans measured by positron emission tomography. Annals of Nuclear Medicine 15:111–116, 2001.

    Article  CAS  PubMed  Google Scholar 

  29. James, K. R., and W. Riha. Convergence criteria for successive overrelaxation. Siam Journal on Numerical Analysis 12:137–143, 1975.

    Article  Google Scholar 

  30. Jensen, F. B. Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport. Acta Physiologica Scandinavica 182:215–227, 2004.

    Article  CAS  PubMed  Google Scholar 

  31. Karch, R., F. Neumann, M. Neumann, and W. Schreiner. A three-dimensional model for arterial tree representation, generated by constrained constructive optimization. Computers in Biology and Medicine 29:19–38, 1999.

    Article  CAS  PubMed  Google Scholar 

  32. Karch, R., F. Neumann, M. Neumann, and W. Schreiner. Staged growth of optimized arterial model trees. Annals of Biomedical Engineering 28:495–511, 2000.

    Article  CAS  PubMed  Google Scholar 

  33. Karch, R., F. Neumann, B. K. Podesser, M. Neumann, P. Szawlowski, and W. Schreiner. Fractal properties of perfusion heterogeneity in optimized arterial trees: a model study. Journal of General Physiology 122:307–321, 2003.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kasischke, K. A., E. M. Lambert, B. Panepento, A. Sun, H. A. Gelbard, R. W. Burgess, T. H. Foster, and M. Nedergaard. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions. Journal of Cerebral Blood Flow and Metabolism 31:68–81, 2011.

    Article  CAS  PubMed  Google Scholar 

  35. Keller, A. L., A. Schuz, N. K. Logothetis, and B. Weber. Vascularization of cytochrome oxidase-rich blobs in the primary visual cortex of squirrel and macaque monkeys. Journal of Neuroscience 31:1246–1253, 2011.

    Article  CAS  PubMed  Google Scholar 

  36. Kreuzer, F. Oxygen supply to tissues: the Krogh model and its assumptions. Experientia 38:1415–1426, 1982.

    Article  CAS  PubMed  Google Scholar 

  37. Krogh, A. The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. Journal of Physiology 52:409–415, 1919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lauwers, F., F. Cassot, V. Lauwers-Cances, P. Puwanarajah, and H. Duvernoy. Morphometry of the human cerebral cortex microcirculation: general characteristics and space-related profiles. NeuroImage 39:936–948, 2008.

    Article  PubMed  Google Scholar 

  39. Linninger, A. A. Biomedical systems research—New perspectives opened by quantitative medical imaging. Computers & Chemical Engineering 36:1–9, 2012.

    Article  CAS  Google Scholar 

  40. Linninger, A. A., M. R. Somayaji, T. Erickson, X. Guo, and R. D. Penn. Computational methods for predicting drug transport in anisotropic and heterogeneous brain tissue. Journal of Biomechanics 41:2176–2187, 2008.

    Article  PubMed  Google Scholar 

  41. Lipowsky, H. H. Microvascular rheology and hemodynamics. Microcirculation, 12:5–15, 2005.

    Google Scholar 

  42. Lorthois, S., and F. Cassot. Fractal analysis of vascular networks: insights from morphogenesis. Journal of Theoretical Biology 262:614–633, 2010.

    Article  PubMed  Google Scholar 

  43. Lorthois, S., F. Cassot, and F. Lauwers. Simulation study of brain blood flow regulation by intra-cortical arterioles in an anatomically accurate large human vascular network. Part II: flow variations induced by global or localized modifications of arteriolar diameters. NeuroImage 54:2840–2853, 2011.

    Article  CAS  PubMed  Google Scholar 

  44. Lorthois, S., F. Cassot, and F. Lauwers. Simulation study of brain blood flow regulation by intra-cortical arterioles in an anatomically accurate large human vascular network: part I: methodology and baseline flow. NeuroImage 54:1031–1042, 2011.

    Article  CAS  PubMed  Google Scholar 

  45. Mintun, M. A., B. N. Lundstrom, A. Z. Snyder, A. G. Vlassenko, G. L. Shulman, and M. E. Raichle. Blood flow and oxygen delivery to human brain during functional activity: theoretical modeling and experimental data. Proc Natl Acad Sci U S A 98:6859–6864, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Neubauer, J. A., and J. Sunderram. Oxygen-sensing neurons in the central nervous system. Journal of Applied Physiology 96:367–374, 2004.

    Article  CAS  PubMed  Google Scholar 

  47. Niimi, H., Y. Komai, S. Yamaguchi, and J. Seki. Microembolic flow disturbances in the cerebral microvasculature with an arcadal network: a numerical simulation. Clin Hemorheol Microcirc 34:247–255, 2006.

    PubMed  Google Scholar 

  48. Nishimura, N., C. B. Schaffer, B. Friedman, P. D. Lyden, and D. Kleinfeld. Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proc Natl Acad Sci U S A 104:365–370, 2007.

    Article  CAS  PubMed  Google Scholar 

  49. Nolte, J., and J. W. Sundsten. The human brain: an introduction to its functional anatomy (5th ed.). St. Louis: Mosby, 2002.

    Google Scholar 

  50. Pawlik, G., A. Rackl, and R. J. Bing. Quantitative capillary topography and blood flow in the cerebral cortex of cats: an in vivo microscopic study. Brain Research 208:35–58, 1981.

    Article  CAS  PubMed  Google Scholar 

  51. Pries, A. Biophysical aspects of blood flow in the microvasculature. Cardiovascular Research 32:657–667, 1995.

    Google Scholar 

  52. Pries, A. R., T. W. Secomb, P. Gaehtgens, and J. F. Gross. Blood flow in microvascular networks. Experiments and simulation. Circulation Research 67:826–834, 1990.

    Article  CAS  PubMed  Google Scholar 

  53. Rakusan, K., and P. Wicker. Morphometry of the small arteries and arterioles in the rat heart: effects of chronic hypertension and exercise. Cardiovascular Research 24:278–284, 1990.

    Article  CAS  PubMed  Google Scholar 

  54. Reichold, J., M. Stampanoni, A. Lena Keller, A. Buck, P. Jenny, and B. Weber. Vascular graph model to simulate the cerebral blood flow in realistic vascular networks. J. Cereb. Blood Flow Metab. 29:1429–1443, 2009.

    Google Scholar 

  55. Rhodin, J. A. Ultrastructure of mammalian venous capillaries, venules, and small collecting veins. Journal of Ultrastructure Research 25:452–500, 1968.

    Article  CAS  PubMed  Google Scholar 

  56. Risser, L., F. Plouraboue, P. Cloetens, and C. Fonta. A 3D-investigation shows that angiogenesis in primate cerebral cortex mainly occurs at capillary level. International Journal of Developmental Neuroscience 27:185–196, 2009.

    Article  PubMed  Google Scholar 

  57. Risser, L., F. Plouraboue, A. Steyer, P. Cloetens, G. Le Duc, and C. Fonta. From homogeneous to fractal normal and tumorous microvascular networks in the brain. Journal of Cerebral Blood Flow and Metabolism 27:293–303, 2007.

    Article  PubMed  Google Scholar 

  58. Rostrup, E., I. Law, M. Blinkenberg, H. B. W. Larsson, A. P. Born, S. Holm, and O. B. Paulson. Regional differences in the CBF and BOLD responses to hypercapnia: a combined PET and fMRI study. NeuroImage 11:87–97, 2000.

    Article  CAS  PubMed  Google Scholar 

  59. Safaeian, N., M. Sellier, and T. David. A computational model of hemodynamic parameters in cortical capillary networks. J. Theor. Biol. Dec 2 2010.

  60. Sakadzic, S., E. Roussakis, M. A. Yaseen, E. T. Mandeville, V. J. Srinivasan, K. Arai, S. Ruvinskaya, A. Devor, E. H. Lo, S. A. Vinogradov, and D. A. Boas. Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue. Nature Methods 7:755–759, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schneider, M., S. Hirsch, B. Weber, and G. Szekely. Physiologically based construction of optimized 3-D arterial tree models. Med Image Comput Comput Assist Interv 14:404–411, 2011.

    PubMed  Google Scholar 

  62. Schneider, M., J. Reichold, B. Weber, G. Szekely, and S. Hirsch. Tissue metabolism driven arterial tree generation. Medical Image Analysis 16:1397–1414, 2012.

    Article  PubMed  Google Scholar 

  63. Schreiner, W., R. Karch, M. Neumann, F. Neumann, P. Szawlowski, and S. Roedler. Optimized arterial trees supplying hollow organs. Medical Engineering & Physics 28:416–429, 2006.

    Article  Google Scholar 

  64. Sharan, M., E. P. Vovenko, A. Vadapalli, A. S. Popel, and R. N. Pittman. Experimental and theoretical studies of oxygen gradients in rat pial microvessels. Journal of Cerebral Blood Flow and Metabolism 28:1597–1604, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Si, H. TetGen, A Quality Tetrahedral Mesh Generator and Three-Dimensional Delaunay Triangulator, 1.4 ed. Berlin, 2006.

  66. Sorenson, A., G., W. A. Copen, L. Ostergaard, F. S. Buonanno, R. G. Gonsalez, G. Rordorf, B. R. Rosen, L. H. Schwamm, R. M. Weisskoff, and W. J. Koroshetz. Hyperacute stroke: simultaneous measurement of relative cerebral blood volume, relative cerebral blood flow, and mean tissue transit time. Neuroradiology, 210, 519–527, 1999.

  67. Su, S. W., M. Catherall, and S. Payne. The influence of network structure on the transport of blood in the human cerebral microvasculature. Microcirculation 19:175–187, 2012.

    Article  PubMed  Google Scholar 

  68. Takahashi, T., T. Nagaoka, H. Yanagida, T. Saitoh, A. Kamiya, T. Hein, L. Kuo, and A. Yoshida. A mathematical model for the distribution of hemodynamic parameters in the human retinal microvasculature network. J Biorheol 23:77–86, 2009.

    Article  Google Scholar 

  69. Tang, W., L. Zhang, A. Linninger, R. S. Tranter, and K. Brezinsky. Solving kinetic inversion problems via a physical trust region gauss-newton method. Industrial and Engineering Chemistry Research 44:3626–3637, 2005.

    Article  CAS  Google Scholar 

  70. Tsai, P. S., J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld. Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels. Journal of Neuroscience 29:14553–14570, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Vaičaitis, N. M., B. J. Sweetman, and A. A. Linninger. A computational model of cerebral vasculature, brain tissue, and cerebrospinal fluid. Presented at the 21st European Symposium on Computer-Aided Process Engineering, Greece, 2011.

  72. Voronoi, G. Nouvelles applications des parametres continus a la theorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik 134:198–287, 1908.

    Google Scholar 

  73. Vovenko, E. Distribution of oxygen tension on the surface of arterioles, capillaries and venules of brain cortex and in tissue in normoxia: an experimental study on rats. Pflugers Archiv. European Journal of Physiology 437:617–623, 1999.

    Article  CAS  PubMed  Google Scholar 

  74. Vovenko, E. P., and A. E. Chuikin. Oxygen tension in rat cerebral cortex microvessels in acute anemia. Neuroscience and Behavioral Physiology 38:493–500, 2008.

    Article  CAS  PubMed  Google Scholar 

  75. Vovenko, E. P., and A. E. Chuikin. Tissue oxygen tension profiles close to brain arterioles and venules in the rat cerebral cortex during the development of acute anemia. Neuroscience and Behavioral Physiology 40:723–731, 2010.

    Article  CAS  PubMed  Google Scholar 

  76. Weber, B., A. L. Keller, J. Reichold, and N. K. Logothetis. The microvascular system of the striate and extrastriate visual cortex of the macaque. Cerebral Cortex 18:2318–2330, 2008.

    Article  PubMed  Google Scholar 

  77. Yang, Y., W. Engelien, S. Xu, H. Gu, D. A. Silbersweig, and E. Stern. Transit time, trailing time, and cerebral blood flow during brain activation: measurement using multislice, pulsed spin-labeling perfusion imaging. Magnetic Resonance in Medicine 44:680–685, 2000.

    Article  CAS  PubMed  Google Scholar 

  78. Zagzoule, M., and J. P. Marc-Vergnes. A global mathematical model of the cerebral circulation in man. Journal of Biomechanics 19:1015–1022, 1986.

    Article  CAS  PubMed  Google Scholar 

  79. Zhang, L. B., K. Kulkarni, M. R. Somayaji, M. Xenos, and A. A. Linninger. Discovery of transport and reaction properties in distributed systems. AIChE Journal 53:381–396, 2007.

    Article  CAS  Google Scholar 

  80. Zhang, L. B., C. Xue, A. Malcolm, K. Kulkarni, and A. A. Linninger. Distributed system design under uncertainty. Industrial and Engineering Chemistry Research 45:8352–8360, 2006.

    Article  CAS  Google Scholar 

  81. Zweifach, B. W. Quantitative studies of microcirculatory structure and function. I. Analysis of pressure distribution in the terminal vascular bed in cat mesentery. Circulation Research 34:843–857, 1974.

    Article  CAS  PubMed  Google Scholar 

  82. Zweifach, B. W., and H. H. Lipowsky. Quantitative studies of microcirculatory structure and function. III. Microvascular hemodynamics of cat mesentery and rabbit omentum. Circulation Research 41:380–390, 1977.

    Article  CAS  PubMed  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4