Adrian, R. J. Twenty years of particle image velocimetry. Exp. Fluids 39:159–169, 2005.
Beitz, W., and K.-H. Grote. VDI-Wärmeatlas. Heidelberg: Springer, 2006.
Berthe, A., D. Kondermann, C. Christensen, L. Goubergrits, C. Garbe, K. Affeld, and U. Kertzscher. Three-dimensional, three-component wall-PIV. Exp. Fluids 48:983–997, 2010.
Brewer, J. A., and D. C. Anderson. Visual interaction with overhauser curves and surfaces. SIGGRAPH Comput. Graph. 11:132–137, 1977.
Buchmann, N. A., C. Atkinson, M. C. Jeremy, and J. Soria. Tomographic particle image velocimetry investigation of the flow in a modeled human carotid artery bifurcation. Exp. Fluids 50:1131–1151, 2011.
Deutsch, S., J. M. Tarbell, K. B. Manning, G. Rosenberg, and A. A. Fontaine. Experimental fluid mechanics of pulsatile artificial blood pumps. Annu. Rev. Fluid Mech. 38:65–86, 2006.
Einstein, A. Die Ursache der Mäanderbildung der Flußläufe und des sogenannten Baerschen Gesetzes. Naturwissenschaften 14:223–224, 1926.
Giridharan, G., C. Lederer, A. Berthe, L. Goubergrits, J. Hutzenlaub, M. Slaughter, R. Dowling, P. Spence, and S. Koenig. Flow dynamics of a novel counterpulsation device characterized by CFD and PIV modeling. Med. Eng. Phys. 33:1193–1202, 2011.
Giridharan, G. A., G. M. Pantalos, K. N. Litwak, P. A. Spence, and S. C. Koenig. Predicted hemodynamic benefits of counterpulsation therapy using a superficial surgical approach. ASAIO J. 52:39–46, 2006.
Graff, E. C., and M. Gharib. Performance prediction of point-based three-dimensional volumetric measurement systems. Meas. Sci. Technol. 19:75403, 2008.
Hawthrone, W. R. Secondary circulation in fluid flow. Proc. R. Soc. Lond. A 206:374–387, 1951.
Heikkilä, J. Geometric camera calibration using circular control points. IEEE Trans. Pattern Anal. Mach. Intell. 22:1066–1077, 2000.
Hinsch, K. D. Three-dimensional particle velocimetry. Meas. Sci. Technol. 6:742–753, 1995.
Hochareon, P., K. B. Manning, A. A. Fontaine, J. M. Tarbell, and S. Deutsch. Wall shear-rate estimation within the 50 cc Penn State artificial heart using particle image velocimetry. Trans. ASME 126:430–437, 2004.
Hsieh, K. T., and R. K. Rajamani. Mathematical model of the hydrocyclone based on physics of fluid flow. AIChE J. 37:735–746, 1991.
Kertzscher, U., A. Berthe, L. Goubergrits, and K. Affeld. Particle image velocimetry of a flow at a vaulted wall. Proc. ImechE 222:465–473, 2008.
Kilner, P. J., G. Z. Yang, R. H. Mohiaddin, D. N. Firmin, and D. B. Longmore. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation 88:2235–2247, 1993.
Koenig, S. C., K. N. Litwak, G. A. Giridharan, G. M. Pantalos, R. D. Dowling, S. D. Prabhu, M. S. Slaughter, M. A. Sobieski, and P. A. Spence. Acute hemodynamic efficacy of a 32-ml subcutaneous counterpulsation device in a calf model of diminished cardiac function. ASAIO J. 54:578–584, 2008.
Kuhn, H. W. The hungarian method for the assignment problem. Nav. Res. Logist. 2:83–97, 1955.
Linneweber, J., P. M. Dohmen, U. Kertzscher, K. Affeld, and W. Konertz. Local glycoprotein IIb/IIIa receptor inhibitor delivery from the pump surface attenuates platelet adhesion in continuous flow ventricular assist devices. Artif. Organs 32:792–799, 2008.
Liu, X., Y. Fan, and X. Deng. Effect of spiral flow on the transport of oxygen in the aorta: a numerical study. Ann. Biomed. Eng. 38(3):917–926, 2010.
Lugt, H. J. Introduction to Vortex Theory. Potomac, MD: Vortex Flow Press, 1996.
Morbiducci, U., R. Ponzini, G. Rizzo, M. Cadioli, A. Esposito, F. M. Montevecchi, and A. Radaelli. Mechanistic insight into the physiological relevance of helical blood flow in the human aorta: an in vivo study. Biomech. Model. Mechanobiol. 10(3):339–355, 2011.
Moulopoulos, S. Intra-aortic balloon counterpulsation 50 years later: initial conception and consequent ideas. Artif. Organs 35:843–848, 2011.
Nanna, J. C., M. A. Navitsky, S. R. Topper, S. Deutsch, and K. B. Manning. A fluid dynamics study in a 50 cc pulsatile ventricle assist device: influence of heart rate variability. J. Biomech. Eng. 133(10):101002, 2011.
Paul, M. C., and A. Larman. Investigation of a spiral blood flow in a model of arterial stenosis. Med. Eng. Phys. 31:1195–1203, 2009.
Rose, E. A., A. C. Gelijns, A. J. Moskowitz, D. F. Heitjan, L. W. Stevenson, W. Dembitsky, J. W. Long, D. D. Ascheim, A. R. Tierney, R. G. Levitan, J. T. Watson, N. S. Ronan, P. A. Shapiro, R. M. Lazar, L. W. Miller, L. Gupta, O. H. Frazier, P. Desvigne-Nickens, M. C. Oz, V. L. Poirier, and P. Meier. Long-term use of a left ventricular assist device for end-stage heart failure. N. Engl. J. Med. 345:1435–1443, 2001.
Schlichting, H. Grenzschichttheorie. Heidelberg: Springer, 1965.
Slaughter, M. S., J. G. Rogers, C. A. Milano, S. D. Russell, J. V. Conte, D. Feldman, B. Sun, A. J. Tatooles, R. M. Delgado, J. W. Long, T. C. Wozniak, W. Ghumman, D. J. Farrar, and O. H. Frazier. Advanced heart failure treated with continuous-flow left ventricular assist device. N. Engl. J. Med. 361:2241–2251, 2009.
Stonebridge, P. A., and C. M. Brophy. Spiral laminar flow in arteries? Lancet 338(30):1360–1361, 1991.
Timms, D. A review of clinical ventricular assist devices. Med. Eng. Phys. 33:1041–1047, 2011.
Tropea, C. Laser Doppler anemometry: recent developments and future challenges. Meas. Sci. Technol. 6:605–619, 1995.
Wen, J., T. Zheng, W. Jiang, X. Deng, and Y. Fan. A comparative study of helical-type and traditional-type artery bypass grafts: numerical simulation. ASAIO J. 57:399–406, 2011.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4