A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-012-0569-5 below:

Flow Field of a Novel Implantable Valveless Counterpulsation Heart Assist Device

References
  1. Adrian, R. J. Twenty years of particle image velocimetry. Exp. Fluids 39:159–169, 2005.

    Article  Google Scholar 

  2. Beitz, W., and K.-H. Grote. VDI-Wärmeatlas. Heidelberg: Springer, 2006.

    Google Scholar 

  3. Berthe, A., D. Kondermann, C. Christensen, L. Goubergrits, C. Garbe, K. Affeld, and U. Kertzscher. Three-dimensional, three-component wall-PIV. Exp. Fluids 48:983–997, 2010.

    Article  Google Scholar 

  4. Brewer, J. A., and D. C. Anderson. Visual interaction with overhauser curves and surfaces. SIGGRAPH Comput. Graph. 11:132–137, 1977.

    Article  Google Scholar 

  5. Buchmann, N. A., C. Atkinson, M. C. Jeremy, and J. Soria. Tomographic particle image velocimetry investigation of the flow in a modeled human carotid artery bifurcation. Exp. Fluids 50:1131–1151, 2011.

    Article  CAS  Google Scholar 

  6. Deutsch, S., J. M. Tarbell, K. B. Manning, G. Rosenberg, and A. A. Fontaine. Experimental fluid mechanics of pulsatile artificial blood pumps. Annu. Rev. Fluid Mech. 38:65–86, 2006.

    Article  Google Scholar 

  7. Einstein, A. Die Ursache der Mäanderbildung der Flußläufe und des sogenannten Baerschen Gesetzes. Naturwissenschaften 14:223–224, 1926.

    Article  Google Scholar 

  8. Giridharan, G., C. Lederer, A. Berthe, L. Goubergrits, J. Hutzenlaub, M. Slaughter, R. Dowling, P. Spence, and S. Koenig. Flow dynamics of a novel counterpulsation device characterized by CFD and PIV modeling. Med. Eng. Phys. 33:1193–1202, 2011.

    Article  PubMed  CAS  Google Scholar 

  9. Giridharan, G. A., G. M. Pantalos, K. N. Litwak, P. A. Spence, and S. C. Koenig. Predicted hemodynamic benefits of counterpulsation therapy using a superficial surgical approach. ASAIO J. 52:39–46, 2006.

    Article  PubMed  Google Scholar 

  10. Graff, E. C., and M. Gharib. Performance prediction of point-based three-dimensional volumetric measurement systems. Meas. Sci. Technol. 19:75403, 2008.

    Article  Google Scholar 

  11. Hawthrone, W. R. Secondary circulation in fluid flow. Proc. R. Soc. Lond. A 206:374–387, 1951.

    Article  Google Scholar 

  12. Heikkilä, J. Geometric camera calibration using circular control points. IEEE Trans. Pattern Anal. Mach. Intell. 22:1066–1077, 2000.

    Article  Google Scholar 

  13. Hinsch, K. D. Three-dimensional particle velocimetry. Meas. Sci. Technol. 6:742–753, 1995.

    Article  CAS  Google Scholar 

  14. Hochareon, P., K. B. Manning, A. A. Fontaine, J. M. Tarbell, and S. Deutsch. Wall shear-rate estimation within the 50 cc Penn State artificial heart using particle image velocimetry. Trans. ASME 126:430–437, 2004.

    Article  Google Scholar 

  15. Hsieh, K. T., and R. K. Rajamani. Mathematical model of the hydrocyclone based on physics of fluid flow. AIChE J. 37:735–746, 1991.

    Article  CAS  Google Scholar 

  16. Kertzscher, U., A. Berthe, L. Goubergrits, and K. Affeld. Particle image velocimetry of a flow at a vaulted wall. Proc. ImechE 222:465–473, 2008.

    Article  CAS  Google Scholar 

  17. Kilner, P. J., G. Z. Yang, R. H. Mohiaddin, D. N. Firmin, and D. B. Longmore. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation 88:2235–2247, 1993.

    Article  PubMed  CAS  Google Scholar 

  18. Koenig, S. C., K. N. Litwak, G. A. Giridharan, G. M. Pantalos, R. D. Dowling, S. D. Prabhu, M. S. Slaughter, M. A. Sobieski, and P. A. Spence. Acute hemodynamic efficacy of a 32-ml subcutaneous counterpulsation device in a calf model of diminished cardiac function. ASAIO J. 54:578–584, 2008.

    Article  PubMed  Google Scholar 

  19. Kuhn, H. W. The hungarian method for the assignment problem. Nav. Res. Logist. 2:83–97, 1955.

    Article  Google Scholar 

  20. Linneweber, J., P. M. Dohmen, U. Kertzscher, K. Affeld, and W. Konertz. Local glycoprotein IIb/IIIa receptor inhibitor delivery from the pump surface attenuates platelet adhesion in continuous flow ventricular assist devices. Artif. Organs 32:792–799, 2008.

    Article  PubMed  Google Scholar 

  21. Liu, X., Y. Fan, and X. Deng. Effect of spiral flow on the transport of oxygen in the aorta: a numerical study. Ann. Biomed. Eng. 38(3):917–926, 2010.

    Article  PubMed  Google Scholar 

  22. Lugt, H. J. Introduction to Vortex Theory. Potomac, MD: Vortex Flow Press, 1996.

    Google Scholar 

  23. Morbiducci, U., R. Ponzini, G. Rizzo, M. Cadioli, A. Esposito, F. M. Montevecchi, and A. Radaelli. Mechanistic insight into the physiological relevance of helical blood flow in the human aorta: an in vivo study. Biomech. Model. Mechanobiol. 10(3):339–355, 2011.

    Article  PubMed  Google Scholar 

  24. Moulopoulos, S. Intra-aortic balloon counterpulsation 50 years later: initial conception and consequent ideas. Artif. Organs 35:843–848, 2011.

    Article  PubMed  Google Scholar 

  25. Nanna, J. C., M. A. Navitsky, S. R. Topper, S. Deutsch, and K. B. Manning. A fluid dynamics study in a 50 cc pulsatile ventricle assist device: influence of heart rate variability. J. Biomech. Eng. 133(10):101002, 2011.

    Article  PubMed  Google Scholar 

  26. Paul, M. C., and A. Larman. Investigation of a spiral blood flow in a model of arterial stenosis. Med. Eng. Phys. 31:1195–1203, 2009.

    Article  PubMed  Google Scholar 

  27. Rose, E. A., A. C. Gelijns, A. J. Moskowitz, D. F. Heitjan, L. W. Stevenson, W. Dembitsky, J. W. Long, D. D. Ascheim, A. R. Tierney, R. G. Levitan, J. T. Watson, N. S. Ronan, P. A. Shapiro, R. M. Lazar, L. W. Miller, L. Gupta, O. H. Frazier, P. Desvigne-Nickens, M. C. Oz, V. L. Poirier, and P. Meier. Long-term use of a left ventricular assist device for end-stage heart failure. N. Engl. J. Med. 345:1435–1443, 2001.

    Article  PubMed  CAS  Google Scholar 

  28. Schlichting, H. Grenzschichttheorie. Heidelberg: Springer, 1965.

    Google Scholar 

  29. Slaughter, M. S., J. G. Rogers, C. A. Milano, S. D. Russell, J. V. Conte, D. Feldman, B. Sun, A. J. Tatooles, R. M. Delgado, J. W. Long, T. C. Wozniak, W. Ghumman, D. J. Farrar, and O. H. Frazier. Advanced heart failure treated with continuous-flow left ventricular assist device. N. Engl. J. Med. 361:2241–2251, 2009.

    Article  PubMed  CAS  Google Scholar 

  30. Stonebridge, P. A., and C. M. Brophy. Spiral laminar flow in arteries? Lancet 338(30):1360–1361, 1991.

    Article  PubMed  CAS  Google Scholar 

  31. Timms, D. A review of clinical ventricular assist devices. Med. Eng. Phys. 33:1041–1047, 2011.

    Article  PubMed  Google Scholar 

  32. Tropea, C. Laser Doppler anemometry: recent developments and future challenges. Meas. Sci. Technol. 6:605–619, 1995.

    Article  CAS  Google Scholar 

  33. Wen, J., T. Zheng, W. Jiang, X. Deng, and Y. Fan. A comparative study of helical-type and traditional-type artery bypass grafts: numerical simulation. ASAIO J. 57:399–406, 2011.

    Article  PubMed  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4