A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-012-0545-0 below:

The Influence of Ischemic Factors on the Migration Rates of Cell Types Involved in Cutaneous and Subcutaneous Pressure Ulcers

Abstract

A pressure ulcer (PU) is a localized injury to the skin and/or to underlying tissues, typically over a weight-bearing bony prominence. PUs often develop in ischemic tissues. Other than being relevant to the etiology of PUs, ischemic factors such as glucose levels, acidity and temperature could potentially affect healing processes as well, particularly, the rate of damage repair. Using an in vitro cell culture model, the goal of the present study was to determine the influence of ischemic factors: low temperature (35 °C), low glucose (1 g/L) and acidic pH (6.7) on the migration rate of NIH3T3 fibroblasts, 3T3L1 preadipocytes and C2C12 myoblasts, which could all be affected by PUs. Cell migration into a local damage site, produced by crushing cells under a micro-indentor, was monitored over ~16 h under controlled temperature and pH conditions. We found that in the NIH3T3 cultures, acidosis significantly hindered the migration rate as well as delayed the times for onset and end of mass cell migration. The effects of temperature and glucose however were not significant. Additionally, under control conditions (temperature 37 °C, glucose 4.5 g/L, pH 7.6), migration rates and times differed significantly across the different cell types. The present findings motivate further studies related to the effects of pH levels on migration performances, particularly in PU where bacterial contamination—associated with an acidic environment—is involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article Subscribe and save

Springer+ Basic

€34.99 /Month

Subscribe now Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others Explore related subjectsDiscover the latest articles and news from researchers in related subjects, suggested using machine learning. Abbreviations
3D:

Three-dimensional

AMR:

Average migration rate

DMEM:

Dulbecco’s modified Eagle’s medium

DTI:

Deep tissue injury

ECM:

Extracellular matrix

FBS:

Fetal bovine serum

FOV:

Field of view

GM:

Growth medium

MMR:

Maximum migration rate

SCI:

Spinal cord injury

SD:

Standard deviation

TEMCM:

Time for end of mass cell migration

TOMCM:

Time for onset of mass cell migration

References
  1. Ankrom, M. A., R. G. Bennett, S. Sprigle, D. Langemo, J. M. Black, D. R. Berlowitz, C. H. Lyder, and National Pressure Ulcer Advisory Panel. Pressure-related deep tissue injury under intact skin and the current pressure ulcer staging systems. Adv. Skin Wound Care 18:35–42, 2005.

  2. Byrne, D. W., and C. A. Salzberg. Major risk factors for pressure ulcers in the spinal cord disabled: a literature review. Spinal Cord 34:255–263, 1996.

    Article  PubMed  CAS  Google Scholar 

  3. Gawlitta, D., C. W. Oomens, D. L. Bader, F. P. Baaijens, and C. V. Bouten. Temporal differences in the influence of ischemic factors and deformation on the metabolism of engineered skeletal muscle. J. Appl. Physiol. 103:464–473, 2007.

    Article  PubMed  CAS  Google Scholar 

  4. Gefen, A., L. H. Cornelissen, D. Gawlitta, D. L. Bader, and C. W. Oomens. The free diffusion of macromolecules in tissue-engineered skeletal muscle subjected to large compression strains. J. Biomech. 41:845–853, 2008.

    Article  PubMed  Google Scholar 

  5. Gefen, A., B. van Nierop, D. L. Bader, and C. W. Oomens. Strain-time cell-death threshold for skeletal muscle in a tissue-engineered model system for deep tissue injury. J. Biomech. 41:2003–2012, 2008.

    Article  PubMed  Google Scholar 

  6. Hu, F., W. W. Sun, X. T. Zhao, Z. J. Cui, and W. X. Yang. TRPV1 mediates cell death in rat synovial fibroblasts through calcium entry-dependent ROS production and mitochondrial depolarization. Biochem. Biophys. Res. Commun. 369:989–993, 2008.

    Article  PubMed  CAS  Google Scholar 

  7. Koivusalo, M., C. Welch, H. Hayashi, C. C. Scott, M. Kim, T. Alexander, N. Touret, K. M. Hahn, and S. Grinstein. Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. J. Cell Biol. 188:547–563, 2010.

    Article  PubMed  CAS  Google Scholar 

  8. Lee, J. G., and E. P. Kay. FGF-2-induced wound healing in corneal endothelial cells requires Cdc42 activation and Rho inactivation through the phosphatidylinositol 3-kinase pathway. Invest. Ophthalmol. Vis. Sci. 47:1376–1386, 2006.

    Article  PubMed  Google Scholar 

  9. Lemasters, J. J., A. L. Nieminen, T. Qian, L. C. Trost, and B. Herman. The mitochondrial permeability transition in toxic, hypoxic and reperfusion injury. Mol. Cell. Biochem. 174:159–165, 1997.

    Article  PubMed  CAS  Google Scholar 

  10. Li, W., Y. Li, S. Guan, J. Fan, C. F. Cheng, A. M. Bright, C. Chinn, M. Chen, and D. T. Woodley. Extracellular heat shock protein-90alpha: linking hypoxia to skin cell motility and wound healing. EMBO J. 26:1221–1233, 2007.

    Article  PubMed  CAS  Google Scholar 

  11. Linder-Ganz, E., and A. Gefen. The effects of pressure and shear on capillary closure in the microstructure of skeletal muscles. Ann. Biomed. Eng. 35:2095–2107, 2007.

    Article  PubMed  Google Scholar 

  12. Loerakker, S., E. Manders, G. J. Strijkers, K. Nicolay, F. P. Baaijens, D. L. Bader, and C. W. Oomens. The effects of deformation, ischemia, and reperfusion on the development of muscle damage during prolonged loading. J. Appl. Physiol. 111:1168–1177, 2011.

    Article  PubMed  CAS  Google Scholar 

  13. Nakrieko, K. A., I. Welch, H. Dupuis, D. Bryce, A. Pajak, and R. St. Arnaud, S. Dedhar, S. J. D’Souza, and L. Dagnino. Impaired hair follicle morphogenesis and polarized keratinocyte movement upon conditional inactivation of integrin-linked kinase in the epidermis. Mol. Biol. Cell. 19:1462–1473, 2008.

    Article  PubMed  CAS  Google Scholar 

  14. Nedergaard, M., S. A. Goldman, S. Desai, and W. A. Pulsinelli. Acid-induced death in neurons and glia. J. Neurosci. 11:2489–2497, 1991.

    PubMed  CAS  Google Scholar 

  15. Perneger, T. V., C. Héliot, A. C. Raë, F. Borst, and J. M. Gaspoz. Hospital-acquired pressure ulcers. Arch. Intern. Med. 158:1940–1945, 1998.

    Article  PubMed  CAS  Google Scholar 

  16. Ridley, J. A. Life at the leading edge. Cell 145:1012–1022, 2011.

    Article  PubMed  CAS  Google Scholar 

  17. Salzberg, C. A., D. W. Byrne, C. G. Cayten, P. van Niewerburgh, J. G. Murphy, and M. Viehbeck. A new pressure ulcer risk assessment scale for individuals with spinal cord injury. Am. J. Phys. Med. Rehabil. 75:96–104, 1996.

    Article  PubMed  CAS  Google Scholar 

  18. Schneider, L. A., A. Korber, S. Grabbe, and J. Dissemond. Influence of pH on wound-healing: a new perspective for wound-therapy? Arch. Dermatol. Res. 298:413–420, 2007.

    Article  PubMed  Google Scholar 

  19. Singer, A. J., and R. A. Clark. Cutaneous wound healing. N. Engl. J. Med. 341:738–746, 1999.

    Article  PubMed  CAS  Google Scholar 

  20. Siu, P. M., E. W. Tam, B. T. Teng, X. M. Pei, J. W. Ng, I. F. Benzie, and A. F. Mak. Muscle apoptosis is induced in pressure-induced deep tissue injury. J. Appl. Physiol. 107:1266–1275, 2009.

    Article  PubMed  CAS  Google Scholar 

  21. Smith, D. M. Pressure ulcers in the nursing home. Ann. Intern. Med. 123:433–442, 1995.

    PubMed  CAS  Google Scholar 

  22. Stadelmann, W. K., A. G. Digenis, and G. R. Tobin. Impediments to wound healing. Am. J. Surg. 176:39S–47S, 1998.

    Article  PubMed  CAS  Google Scholar 

  23. Stekelenburg, A., D. Gawlitta, D. L. Bader, and C. W. Oomens. Deep tissue injury: how deep is our understanding? Arch. Phys. Med. Rehabil. 89:1410–1413, 2008.

    Article  PubMed  Google Scholar 

  24. Stekelenburg, A., G. J. Strijkers, H. Parusel, D. L. Bader, K. Nicolay, and C. W. Oomens. Role of ischemia and deformation in the onset of compression-induced deep tissue injury: MRI-based studies in a rat model. J. Appl. Physiol. 102:2002–2011, 2007.

    Article  PubMed  Google Scholar 

  25. Topman, G., O. Sharabani-Yosef, and A. Gefen. A method for quick, low-cost automated confluency measurements. Microsc. Microanal. 17:915–922, 2011.

    Article  PubMed  CAS  Google Scholar 

  26. Topman, G., O. Sharabani-Yosef, and A. Gefen. A standardized objective method for continuously measuring the kinematics of cultures covering a mechanically-damaged site. Med. Eng. Phys. 34:225–232, 2012.

    Article  PubMed  Google Scholar 

  27. Witte, M. B., and A. Barbul. General principles of wound healing. Surg. Clin. N. Am. 77:509–528, 1997.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Orna Sharabani-Yosef (Department of Biomedical Engineering, Tel Aviv University) for her help in running the cell migration studies. This research is being supported by a grant from the Ministry of Science & Technology, Israel & the Ministry of Research, Taiwan (F.H.L. and A.G.).

Conflict of interest

None.

Author information Authors and Affiliations
  1. Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, 69978, Tel Aviv, Israel

    Gil Topman & Amit Gefen

  2. Institute of Biomedical Engineering, National Taiwan University (NTU), No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan, ROC

    Feng-Huei Lin

  3. Division of Medical Engineering Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 350, Taiwan, ROC

    Feng-Huei Lin

Authors
  1. Gil Topman
  2. Feng-Huei Lin
  3. Amit Gefen
Corresponding author

Correspondence to Amit Gefen.

Additional information

Associate Editor Cheng Dong oversaw the review of this article.

About this article Cite this article

Topman, G., Lin, FH. & Gefen, A. The Influence of Ischemic Factors on the Migration Rates of Cell Types Involved in Cutaneous and Subcutaneous Pressure Ulcers. Ann Biomed Eng 40, 1929–1939 (2012). https://doi.org/10.1007/s10439-012-0545-0

Download citation

Keywords

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4