Abbah, S. A., C. X. L. Lam, D. W. Hutmacher, J. C. H. Goh, and H. Wong. Biological performance of a polycaprolactone-based scaffold used as fusion cage device in a large animal model of spinal reconstructive surgery. Biomaterials 30:5086–5093, 2009.
Agrillo, U., L. Mastronardi, and F. Puzzilli. Anterior cervical fusion with carbon fiber cage containing coralline hydroxyapatite: preliminary observations in 45 consecutive cases of soft-disc herniation. J. Neurosurg. 96:273–276, 2002.
Alini, M., S. M. Eisenstein, K. Ito, C. Little, A. A. Kettler, K. Masuda, J. Melrose, J. Ralphs, I. Stokes, and H. J. Wilke. Are animal models useful for studying human disc disorders/degeneration? Eur. Spine. J. 17(1):2–19, 2008.
Arinzeh, T. L., T. Tran, J. Mcalary, and G. Daculsi. A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation. Biomaterials 26:3631–3638, 2005.
Burr, D. B., C. Milgrom, D. Fyhrie, M. Forwood, M. Nyska, A. Finestone, S. Hoshaw, E. Saiag, and A. Simkin. In vivo measurement of human tibial strains during vigorous activity. Bone 18(5):405–410, 1996.
Byers, B. A., and A. J. Garcia. Exogenous runx2 expression enhances in vitro osteoblastic differentiation and mineralization in primary bone marrow stromal cells. Tissue Eng. A 10(11/12):1623–1632, 2004.
Carson, J. S., and M. P. G. Bostrom. Synthetic bone scaffolds and fracture repair. Injury 38S1:33–37, 2007.
Chang, W. C., H. K. Tsou, W. S. Chen, C. C. Chen, and C. C. Shen. Preliminary comparison of radiolucent cages containing either autogenous cancellous bone or hydroxyapatite graft in multilevel cervical fusion. J. Clin. Neurosci. 16:793–796, 2009.
Charlebois, M., M. Pretterklieber, and P. K. Zysset. The role of fabric in the large strain compressive behavior of human trabecular bone. J. Biomech. Eng. 132(12):121006, 2010.
Chau, A. M. T., and R. J. Mobbs. Bone graft substitutes in anterior cervical discectomy and fusion. Eur. Spine J. 18:449–464, 2009.
Ciapetti, G., L. Ambrosio, G. Marletta, N. Baldini, and A. Giunti. Human bone marrow stromal cells: in vitro expansion and differentiation for bone engineering. Biomaterials 27(36):6150–6160, 2006.
Daculsi, G., O. Laboux, O. Malard, and P. Weiss. Current state of the art of biphasic calcium phosphate bioceramics. J. Mater. Sci.: Mater. Med. 14:195–200, 2003.
Debusscher, F., S. Aunoble, Y. Alsawad, D. Clement, and J. C. Le Huec. Anterior cervical fusion with a bio-resorbable composite cage (beta TCP-PLLA): clinical and radiological results from a prospective study on 20 patients. Eur. Spine J. 18:1314–1320, 2009.
Dendorfer, S., H. J. Maier, D. Taylor, and J. Hammer. Anisotrophy of the fatigue behavior of cancellous bone. J. Biomech. 41:636–641, 2008.
Endres, M., D. W. Hutmacher, A. J. Salgado, C. Kaps, J. Ringe, R. L. Reis, M. Sittinger, A. Brandwood, and J. T. Schantz. Osteogenic induction of human bone marrow-derived mesenchymal progenitor cells in novel synthetic polymer-hydrogel matrices. Tissue Eng. 9(4):689–702, 2003.
Erisken, C., D. M. Kalyon, and H. Wang. Functionally and continuously graded electrospun polycaprolactone and β-tricalcium phosphate nanocomposites for interface tissue engineering applications. Biomaterials 29:4065–4073, 2008.
Faour, O., R. Dimitriou, C. A. Cousins, and P. V. Giannoudis. The use of bone graft substitutes in large cancellous voids: any specific needs? Injury 42:S87–S90, 2011.
Giannoudis, P. V., H. Dinopoulos, and E. Tsiridis. Bone substitutes: an update. Injury 36S:S20–S27, 2005.
Goldstein, A. S., T. M. Juarez, C. D. Helmke, M. C. Gustin, and A. G. Mikos. Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials 22:1279–1288, 2001.
Greenwald, A. S., S. D. Boden, V. M. Goldberg, Y. Khan, C. T. Laurecin, and R. N. Rosier. Bone-graft substitutes: facts, fictions, and applications. J. Bone Joint. Surg. Am. 83:S98–S103, 2001.
Guarino, V., P. Taddei, M. Di Foggia, C. Fagnano, G. Ciapetti, and L. Ambrosio. The influence of hydroxyapatite particles on in vitro degradation behavior of poly ε-caprolactone-based composite scaffolds. Tissue Eng. A 15(11):3655–3668, 2009.
Haddock, S. M., O. C. Yeh, P. V. Mummaneni, W. S. Rosenberg, and T. M. Keaveny. Similarity in the fatigue behavior of trabecular bone across site and species. J. Biomech. 37:181–187, 2004.
Harris, C. T., and L. F. Cooper. Comparison of bone graft matrices for human mesenchymal stem cell-directed osteogenesis. J. Biomed. Mater. Res. A 68(4):747–755, 2004.
Harrison, K. L., and M. J. Jenkins. The effect of crystallinity and water absorption on the dynamic mechanical relaxation behaviour of polycaprolactone. Polym Int. 53:1298–1304, 2004.
Hutmacher, D. W. Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543, 2000.
Kalyon, D. M., and M. Malik. An integrated approach for numerical analysis of coupled flow and heat transfer in co-rotating twin screw extruders. Int. Polym. Processing 22:293–302, 2007.
Kalyon, D. M., D. Yu, and J. Yu. Melt rheology of two engineering plastics: poly(ether imide) and poly (2, 6-dimethyl-1, 4 phenylene ether). J. Rheo. 32(8):789–811, 1988.
Khan, S. N., E. Tomin, and J. M. Lane. Clinical applications of bone graft substitutes. Orthop. Clin. North. Am. 31(3):389–398, 2000.
Kim, H. J., U. J. Kim, G. Vunjak-Novakovic, B. H. Min, and D. L. Kaplan. Influence of macroporous protein scaffold on bone tissue engineering from bone marrow cells. Biomaterials 26:4442–4452, 2005.
Kohlhauser, C., C. Hellmich, C. Vitale-Brovarone, A. R. Boccaccini, A. Rota, and J. Eberhardsteiner. Ultrasonic characterisation of porous biomaterials across different frequencies. Strain 45:34–44, 2009.
Kruyet, M. C., S. M. Van Gaalen, F. C. Oner, A. J. Verbout, J. D. de Bruijn, and W. J. A. Dhert. Bone tissue engineering and spinal fusion: the potential of hybrid constructs by combining osteoprogenitor cells and scaffolds. Biomaterials 25:1436–1473, 2004.
Kurtz, S. M., and J. N. Devine. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28:4845–4869, 2007.
Lam, C. X. F., M. M. Savalani, S. Teoh, and D. W. Hutmacher. Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions. Biomed. Mater. 3:034108, 2008.
LeGeros, R. Z., S. Lin, R. Rohanizadeh, D. Mijares, and J. P. LeGeros. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J. Mater. Sci.: Mater. Med. 14:201–209, 2003.
Li, C., C. Vepari, H. J. Jin, H. J. Kim, and D. L. Kaplan. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 27:31115–33124, 2006.
Li, H., X. Zou, Q. Xue, N. Egund, M. Lind, and C. Bunger. Effects of autogenous bone graft impaction and tricalcium phosphate on anterior interbody fusion in porcine lumbar spine. Acta. Orthop. Scand. 75:456–463, 2003.
Lian, J. B., and G. S. Stein. Concepts of osteoblast growth and differentiation: basis for modulation of cell development and tissue formation. Crit. Rev. Oral. Biol. Med. 3(3):269–305, 1992.
Livingston, T. L., S. Gordon, M. Archambault, S. Kadiyala, K. McIntosh, A. Smith, and S. J. Peter. Mesenchymal stem cells combined with biphasic calcium phosphate ceramics promote bone regeneration. J. Mater. Sci.: Mater. Med. 14:211–218, 2003.
Malik, M., and D. M. Kalyon. Three-dimensional finite element simulation of processing of generalized Newtonian fluids in counter-rotating and tangential twin screw extruder and die combination. Int. Polym. Process. 20:398–409, 2005.
Matsuura, M., F. Eckstein, E. M. Lochmuller, and P. K. Zysset. The role of fabric in the quasi-static compressive mechanical properties of human trabecular bone from various anatomical locations. Biomech. Model. Mechanobiol. 7:27–42, 2008.
Moore, T. L. A., and L. J. Gibson. Fatigue of bovine trabecular bone. J. Biomech. Eng. 125(6):761–768, 2003.
Ng, A. M. H., K. K. Tan, M. Y. Phang, O. Aziyati, G. H. Tan, M. R. Isa, B. S. Aminuddin, M. Naseem, O. Fauziah, and B. H. I. Ruszymah. Differential osteogenic activity of osteoprogenitor cells on HA and TCP/HA scaffold of tissue engineered bone. J. Biomed. Mater. Res. A 85A(2):301–312, 2008.
O’Halloran, D. M., and A. S. Pandit. Tissue-engineering approach to regenerating the intervertebral disc. Tissue Eng. 13(8):1931–1954, 2007.
Ozkan, S., D. Kalyon, and X. Yu. Functionally graded β-TCP/PCL nanocomposite scaffolds for bone tissue engineering: in vitro evaluation with human fetal osteoblast cells. J. Biomed. Mater. Res. A 92A(3):1007–1018, 2009.
Rai, B., J. L. Lin, Z. X. Lim, R. E. Guldberg, D. W. Hutmacher, and S. M. Cool. Differences between in vitro viability and differentiation and in vivo bone-forming efficacy of human mesenchymal stem cells cultured on PCL-TCP scaffolds. Biomaterials 31(31):7960–7970, 2010.
Rapillard, L., M. Charlebois, and P. K. Zysset. Compressive fatigue behavior of human vertebral trabecular bone. J. Biomech. 39:2133–2139, 2006.
Reignier, J., and M. A. Huneault. Preparation, of interconnected poly (ε-caprolactone) porous scaffolds by a combination of polymer and salt particulate leaching. Polymer 47:4703–4717, 2006.
Schopper, C., F. Ziya-Ghazvini, W. Goriwoda, D. Moser, F. Wanschitz, E. Spassova, G. Lagogiannis, A. Auterith, and R. Ewers. HA/TCP compounding of a porous CaP biomaterial improves bone formation and scaffold degradation—a long-term histological study. J. Biomed. Mater. Res. B Appl. Biomater. 74(1):458–467, 2005.
Setzer, B., M. Bachle, M. C. Metzger, and R. J. Kohal. The gene-expression and phenotypic response of hFOB 1.19 osteoblasts to surface-modified titanium and zirconia. Biomaterials 30:979–990, 2009.
Shedid, D., K. T. Ugokwe, and E. C. Benzel. Lumbar total disc replacement compared with spinal fusion: treatment choice and evaluation of outcome. Nat. Clin. Pract. Neurol. 1(1):4–5, 2005.
Shikinami, Y., and M. Okuno. Mechanical evaluation of novel spinal interbody fusion cages made of bioactive, resorbable composites. Biomaterials 24:3161–3170, 2003.
Smit, T. H., T. A. P. Engels, S. H. M. Söntjens, and L. E. Govaert. Time-dependent failure in load-bearing polymers: a potential hazard in structural applications in polylactides. J. Mater. Sci.: Mater. Med. 21:871–878, 2010.
Topolinski, T., A. Cichanski, A. Mazurkiewicz, and K. Nowicki. Study of the behavior of the trabecular bone under cyclic compression with stepwise increasing amplitude. J. Mech. Behav. Biomed. Mater., 2011. doi:10.1016/j.jmbbm.2011.05.032.
Valdevit, A. Dynamic Biochemical Comparison of Single Versus Dual Threaded Pedicle Screws. PhD Thesis, Stevens Institute of Technology, Hoboken, NJ, 2010.
Wang, J., M. K. Cheung, and Y. Mi. Miscibility and morphology in crystalline/amorphous blends of poly(caprolactone)/poly(4-vinylphenol) as studied by DSC, FTIR and 13C solid state NMR. Polymer 43:1357–1364, 2002.
Wuisman, P. I. J. M., and T. H. Smith. Bioresorbable polymers: heading for a new generation of spinal cages. Eur. Spine J. 15:133–148, 2006.
Yilgor, P., R. A. Sousa, R. L. Reis, N. Hasirci, and V. Hasirci. 3D plotted PCL scaffolds for stem cell based bone tissue engineering. Macromol. Symp. 269:92–99, 2008.
Yourek, G., S. M. McCormick, J. J. Mao, and G. C. Reilly. Shear stress induces osteogenic differentiation of human mesenchymal stem cells. Regen. Med. 5(5):713–724, 2010.
Zhou, Y., D. W. Hutmacher, S. L. Varawan, and T. M. Lim. In vitro bone engineering based on polycaprolactone and polycaprolactone–tricalcium phosphate composites. Polym. Int. 56:333–342, 2007.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4