Adamson, R. H., and G. Clough. Plasma proteins modify the endothelial cell glycocalyx of frog mesenteric microvessels. J. Physiol. 445:473–486, 1992.
Alon, R., D. A. Hammer, and T. A. Springer. Lifetime of the P-selectin–carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature 374:539–542, 1995.
Arfors, K. E., C. Lundberg, L. Lindbom, K. Lundberg, P. G. Beatty, and J. M. Harlan. A monoclonal antibody to the membrane glycoprotein complex CD18 inhibits polymorphonuclear leukocyte accumulation and plasma leakage in vivo. Blood 69:338–340, 1987.
Arisaka, T., M. Mitsumata, M. Kawasumi, T. Tohjima, S. Hirose, and Y. Yoshida. Effects of shear stress on glycosaminoglycan synthesis in vascular endothelial cells. Ann. N. Y. Acad. Sci. 748:543–554, 1995.
Barabino, G. A., M. O. Platt, and D. K. Kaul. Sickle cell biomechanics. Annu. Rev. Biomed. Eng. 12:345–367, 2010.
Bennett, H. S., J. H. Luft, and J. C. Hampton. Morphological classifications of vertebrate blood capillaries. Am. J. Physiol. 196:381–390, 1959.
Bruegger, D., M. Jacob, M. Rehm, M. Loetsch, U. Welsch, P. Conzen, and B. F. Becker. Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of guinea pig hearts. Am. J. Physiol. Heart Circ. Physiol. 289:H1993–H1999, 2005.
Brule, S., N. Charnaux, A. Sutton, D. Ledoux, T. Chaigneau, L. Saffar, and L. Gattegno. The shedding of syndecan-4 and syndecan-1 from HeLa cells and human primary macrophages is accelerated by SDF-1/CXCL12 and mediated by the matrix metalloproteinase-9. Glycobiology 16:488–501, 2006.
Cabrales, P., B. Y. Vazquez, A. G. Tsai, and M. Intaglietta. Microvascular and capillary perfusion following glycocalyx degradation. J. Appl. Physiol. 102:2251–2259, 2007.
Chappell, D., K. Hofmann-Kiefer, M. Jacob, M. Rehm, J. Briegel, U. Welsch, P. Conzen, and B. F. Becker. TNF-alpha induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin. Basic Res. Cardiol. 104:78–89, 2009.
Chappell, D., M. Jacob, O. Paul, M. Rehm, U. Welsch, M. Stoeckelhuber, P. Conzen, and B. F. Becker. The glycocalyx of the human umbilical vein endothelial cell: an impressive structure ex vivo but not in culture. Circ. Res. 104:1313–1317, 2009.
Colburn, P., E. Kobayashi, and V. Buonassisi. Depleted level of heparan sulfate proteoglycan in the extracellular matrix of endothelial cell cultures exposed to endotoxin. J. Cell. Physiol. 159:121–130, 1994.
Constantinescu, A. A., H. Vink, and J. A. Spaan. Elevated capillary tube hematocrit reflects degradation of endothelial cell glycocalyx by oxidized LDL. Am. J. Physiol. Heart Circ. Physiol. 280:H1051–H1057, 2001.
Constantinescu, A. A., H. Vink, and J. A. Spaan. Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface. Arterioscler. Thromb. Vasc. Biol. 23:1541–1547, 2003.
Danielli, J. F. Capillary permeability and oedema in the perfused frog. J. Physiol. 98:109–129, 1940.
DeLano, F. A., and G. W. Schmid-Schonbein. Proteinase activity and receptor cleavage: mechanism for insulin resistance in the spontaneously hypertensive rat. Hypertension 52:415–423, 2008.
Desjardins, C., and B. R. Duling. Heparinase treatment suggests a role for the endothelial cell glycocalyx in regulation of capillary hematocrit. Am. J. Physiol. 258:H647–H654, 1990.
Ding, K., M. Lopez-Burks, J. A. Sanchez-Duran, M. Korc, and A. D. Lander. Growth factor-induced shedding of syndecan-1 confers glypican-1 dependence on mitogenic responses of cancer cells. J. Cell Biol. 171:729–738, 2005.
Endo, K., T. Takino, H. Miyamori, H. Kinsen, T. Yoshizaki, M. Furukawa, and H. Sato. Cleavage of syndecan-1 by membrane type matrix metalloproteinase-1 stimulates cell migration. J. Biol. Chem. 278:40764–40770, 2003.
Fahraeus, R. The suspension stability of blood. Physiol. Rev. 9:241–274, 1929.
Fitzgerald, M. L., Z. Wang, P. W. Park, G. Murphy, and M. Bernfield. Shedding of syndecan-1 and -4 ectodomains is regulated by multiple signaling pathways and mediated by a TIMP-3-sensitive metalloproteinase. J. Cell Biol. 148:811–824, 2000.
Fux, L., N. Ilan, R. D. Sanderson, and I. Vlodavsky. Heparanase: busy at the cell surface. Trends Biochem. Sci. 34:511–519, 2009.
Gao, L., and H. H. Lipowsky. Composition of the endothelial glycocalyx and its relation to its thickness and diffusion of small solutes. Microvasc. Res. 80:394–401, 2010.
Golub, L. M., H. M. Lee, M. E. Ryan, W. V. Giannobile, J. Payne, and T. Sorsa. Tetracyclines inhibit connective tissue breakdown by multiple non-antimicrobial mechanisms. Adv. Dent. Res. 12:12–26, 1998.
Gotte, M. Syndecans in inflammation. FASEB J. 17:575–591, 2003.
Gouverneur, M., J. A. Spaan, H. Pannekoek, R. D. Fontijn, and H. Vink. Fluid shear stress stimulates incorporation of hyaluronan into endothelial cell glycocalyx. Am. J. Physiol. Heart Circ. Physiol. 290:H458–H462, 2006.
Grimm, J., R. Keller, and P. G. de Groot. Laminar flow induces cell polarity and leads to rearrangement of proteoglycan metabolism in endothelial cells. Thromb. Haemost. 60:437–441, 1988.
Gronski, Jr., T. J., R. L. Martin, D. K. Kobayashi, B. C. Walsh, M. C. Holman, M. Huber, H. E. Van Wart, and S. D. Shapiro. Hydrolysis of a broad spectrum of extracellular matrix proteins by human macrophage elastase. J. Biol. Chem. 272:12189–12194, 1997.
Haas, T. L., M. Milkiewicz, S. J. Davis, A. L. Zhou, S. Egginton, M. D. Brown, J. A. Madri, and O. Hudlicka. Matrix metalloproteinase activity is required for activity-induced angiogenesis in rat skeletal muscle. Am. J. Physiol. Heart Circ. Physiol. 279:1540–1547, 2000.
Hafezi-Moghadam, A., K. L. Thomas, A. J. Prorock, Y. Huo, and K. Ley. l-Selectin shedding regulates leukocyte recruitment. J. Exp. Med. 193:863–872, 2001.
Haldenby, K. A., D. C. Chappell, C. P. Winlove, K. H. Parker, and J. A. Firth. Focal and regional variations in the composition of the glycocalyx of large vessel endothelium. J. Vasc. Res. 31:2–9, 1994.
Hayward, R., R. Scalia, B. Hopper, J. Z. Appel, III, and A. M. Lefer. Cellular mechanisms of heparinase III protection in rat traumatic shock. Am. J. Physiol. 275:H23–H30, 1998.
Henry, C. B., and B. R. Duling. TNF-alpha increases entry of macromolecules into luminal endothelial cell glycocalyx. Am. J. Physiol. Heart Circ. Physiol. 279:H2815–H2823, 2000.
Hofmann-Kiefer, K. F., G. I. Kemming, D. Chappell, M. Flondor, H. Kisch-Wedel, A. Hauser, S. Pallivathukal, P. Conzen, and M. Rehm. Serum heparan sulfate levels are elevated in endotoxemia. Eur. J. Med. Res. 14:526–531, 2009.
Hoover, R. L., R. Folger, W. A. Haering, B. R. Ware, and M. J. Karnovsky. Adhesion of leukocytes to endothelium: roles of divalent cations, surface charge, chemotactic agents and substrate. J. Cell Sci. 45:73–86, 1980.
House, S. D., and H. H. Lipowsky. Leukocyte–endothelium adhesion: microhemodynamics in mesentery of the cat. Microvasc. Res. 34:363–379, 1987.
House, S. D., and H. H. Lipowsky. Microvascular hematocrit and red cell flux in rat cremaster muscle. Am. J. Physiol. 252:H211–H222, 1987.
Huxley, V. H., and F. E. Curry. Differential actions of albumin and plasma on capillary solute permeability. Am. J. Physiol. 260:H1645–H1654, 1991.
Ihrcke, N. S., and J. L. Platt. Shedding of heparan sulfate proteoglycan by stimulated endothelial cells: evidence for proteolysis of cell-surface molecules. J. Cell. Physiol. 168:625–637, 1996.
Ihrcke, N. S., L. E. Wrenshall, B. J. Lindman, and J. L. Platt. Role of heparan sulfate in immune system–blood vessel interactions. Immunol. Today 14:500–505, 1993.
Iigo, Y., M. Suematsu, T. Higashida, J. Oheda, K. Matsumoto, Y. Wakabayashi, Y. Ishimura, M. Miyasaka, and T. Takashi. Constitutive expression of ICAM-1 in rat microvascular systems analyzed by laser confocal microscopy. Am. J. Physiol. 273:H138–H147, 1997.
Jung, U., K. E. Norman, K. Scharffetter-Kochanek, A. L. Beaudet, and K. Ley. Transit time of leukocytes rolling through venules controls cytokine-induced inflammatory cell recruitment in vivo. J. Clin. Invest. 102:1526–1533, 1998.
Kinashi, T., and K. Katagiri. Regulation of lymphocyte adhesion and migration by the small GTPase Rap1 and its effector molecule, RAPL. Immunol. Lett. 93:1–5, 2004.
Klitzman, B., and B. R. Duling. Microvascular hematocrit and red cell flow in resting and contracting striated muscle. Am. J. Physiol. 237:H481–H490, 1979.
Laudanna, C., J. Y. Kim, G. Constantin, and E. Butcher. Rapid leukocyte integrin activation by chemokines. Immunol. Rev. 186:37–46, 2002.
Laurent, T. C., and J. R. Fraser. Hyaluronan. FASEB J. 6:2397–2404, 1992.
Lawrence, M. B., L. V. McIntire, and S. G. Eskin. Effect of flow on polymorphonuclear leukocyte/endothelial cell adhesion. Blood 70:1284–1290, 1987.
Lawrence, M. B., and T. A. Springer. Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell 65:859–873, 1991.
Lawrence, M. B., and T. A. Springer. Neutrophils roll on E-selectin. J. Immunol. 151:6338–6346, 1993.
Ley, K., D. C. Bullard, M. L. Arbones, R. Bosse, D. Vestweber, T. F. Tedder, and A. L. Beaudet. Sequential contribution of L- and P-selectin to leukocyte rolling in vivo. J. Exp. Med. 181:669–675, 1995.
Li, Z., L. Li, H. R. Zielke, L. Cheng, R. Xiao, M. T. Crow, W. G. Stetler-Stevenson, J. Froehlich, and E. G. Lakatta. Increased expression of 72-kd type IV collagenase (MMP-2) in human aortic atherosclerotic lesions. Am. J. Pathol. 148:121–128, 1996.
Li, Q., P. W. Park, C. L. Wilson, and W. C. Parks. Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 111:635–646, 2002.
Lipowsky, H. H., R. Sah, and A. Lescanic. Relative roles of doxycycline and cation chelation in endothelial glycan shedding and adhesion of leukocytes. Am. J. Physiol. Heart Circ. Physiol. 300:H415–H422, 2011.
Luft, J. H. Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed. Proc. 25:1773–1783, 1966.
Luo, B. H., C. V. Carman, and T. A. Springer. Structural basis of integrin regulation and signaling. Annu. Rev. Immunol. 25:619–647, 2007.
Mulivor, A. W., and H. H. Lipowsky. Role of glycocalyx in leukocyte–endothelial cell adhesion. Am. J. Physiol. Heart Circ. Physiol. 283:H1282–H1291, 2002.
Mulivor, A. W., and H. H. Lipowsky. Inflammation- and ischemia-induced shedding of venular glycocalyx. Am. J. Physiol. Heart Circ. Physiol. 286:H1672–H1680, 2004.
Mulivor, A. W., and H. H. Lipowsky. Inhibition of glycan shedding and leukocyte–endothelial adhesion in postcapillary venules by suppression of matrixmetalloprotease activity with doxycycline. Microcirculation 16:657–666, 2009.
Park, P. W., O. Reizes, and M. Bernfield. Cell surface heparan sulfate proteoglycans: selective regulators of ligand–receptor encounters. J. Biol. Chem. 275:29923–29926, 2000.
Platt, J. L., A. P. Dalmasso, B. J. Lindman, N. S. Ihrcke, and F. H. Bach. The role of C5a and antibody in the release of heparan sulfate from endothelial cells. Eur. J. Immunol. 21:2887–2890, 1991.
Platt, J. L., G. M. Vercellotti, B. J. Lindman, T. R. Oegema, Jr., F. H. Bach, and A. P. Dalmasso. Release of heparan sulfate from endothelial cells. Implications for pathogenesis of hyperacute rejection. J. Exp. Med. 171:1363–1368, 1990.
Platts, S. H., and B. R. Duling. Adenosine A3 receptor activation modulates the capillary endothelial glycocalyx. Circ. Res. 94:77–82, 2004.
Platts, S. H., J. Linden, and B. R. Duling. Rapid modification of the glycocalyx caused by ischemia-reperfusion is inhibited by adenosine A2A receptor activation. Am. J. Physiol. Heart Circ. Physiol. 284:H2360–H2367, 2003.
Poiseuille, J. L. M. Recherches sur les causes du mouvement du sang dans les vaisseaux capillaries. C. R. Acad. Sci. 6:554–560, 1835.
Potter, D. R., and E. R. Damiano. The hydrodynamically relevant endothelial cell glycocalyx observed in vivo is absent in vitro. Circ. Res. 102:770–776, 2008.
Pries, A. R., T. W. Secomb, and P. Gaehtgens. The endothelial surface layer. Pflugers Arch. 440:653–666, 2000.
Pries, A. R., T. W. Secomb, P. Gaehtgens, and J. F. Gross. Blood flow in microvascular networks. Experiments and simulation. Circ. Res. 67:826–834, 1990.
Pries, A. R., T. W. Secomb, H. Jacobs, M. Sperandio, K. Osterloh, and P. Gaehtgens. Microvascular blood flow resistance: role of endothelial surface layer. Am. J. Physiol. 273:H2272–H2279, 1997.
Purushothaman, A., T. Uyama, F. Kobayashi, S. Yamada, K. Sugahara, A. C. Rapraeger, and R. D. Sanderson. Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis. Blood 115:2449–2457, 2010.
Rapraeger, A. Transforming growth factor (type beta) promotes the addition of chondroitin sulfate chains to the cell surface proteoglycan (syndecan) of mouse mammary epithelia. J. Cell Biol. 109:2509–2518, 1989.
Rehm, M., D. Bruegger, F. Christ, P. Conzen, M. Thiel, M. Jacob, D. Chappell, M. Stoeckelhuber, U. Welsch, B. Reichart, K. Peter, and B. F. Becker. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation 116:1896–1906, 2007.
Reitsma, S., D. W. Slaaf, H. Vink, M. A. van Zandvoort, and M. G. oude Egbrink. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. 454:345–359, 2007.
Smith, M. L., D. S. Long, E. R. Damiano, and K. Ley. Near-wall micro-PIV reveals a hydrodynamically relevant endothelial surface layer in venules in vivo. Biophys. J. 85:637–645, 2003.
Spinale, F. G. Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol. Rev. 87:1285–1342, 2007.
Springer, T. A. Adhesion receptors of the immune system. Nature 346:425–434, 1990.
Squire, J. M., M. Chew, G. Nneji, C. Neal, J. Barry, and C. Michel. Quasi-periodic substructure in the microvessel endothelial glycocalyx: a possible explanation for molecular filtering? J. Struct. Biol. 136:239–255, 2001.
Subramanian, S. V., M. L. Fitzgerald, and M. Bernfield. Regulated shedding of syndecan-1 and -4 ectodomains by thrombin and growth factor receptor activation. J. Biol. Chem. 272:14713–14720, 1997.
Sutera, S. P., V. Seshadri, P. A. Croce, and R. M. Hochmuth. Capillary blood flow. II. Deformable model cells in tube flow. Microvasc. Res. 2:420–433, 1970.
Svennevig, K., T. Hoel, A. Thiara, S. Kolset, A. Castelheim, T. Mollnes, F. Brosstad, E. Fosse, and J. Svennevig. Syndecan-1 plasma levels during coronary artery bypass surgery with and without cardiopulmonary bypass. Perfusion 23:165–171, 2008.
Taraboletti, G., S. D’Ascenzo, P. Borsotti, R. Giavazzi, A. Pavan, and V. Dolo. Shedding of the matrix metalloproteinases MMP-2, MMP-9, and MT1-MMP as membrane vesicle-associated components by endothelial cells. Am. J. Pathol. 160:673–680, 2002.
Vink, H., and B. R. Duling. Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ. Res. 79:581–589, 1996.
Vogl-Willis, C. A., and I. J. Edwards. High-glucose-induced structural changes in the heparan sulfate proteoglycan, perlecan, of cultured human aortic endothelial cells. Biochim. Biophys. Acta 1672:36–45, 2004.
Weinbaum, S., J. M. Tarbell, and E. R. Damiano. The structure and function of the endothelial glycocalyx layer. Annu. Rev. Biomed. Eng. 9:121–167, 2007.
Xu, J., D. Qu, N. L. Esmon, and C. T. Esmon. Metalloproteolytic release of endothelial cell protein C receptor. J. Biol. Chem. 275:6038–6044, 2000.
Yaras, N., M. Sariahmetoglu, A. Bilginoglu, A. Aydemir-Koksoy, A. Onay-Besikci, B. Turan, and R. Schulz. Protective action of doxycycline against diabetic cardiomyopathy in rats. Br. J. Pharmacol. 155:1174–1184, 2008.
Yu, W. H., and J. F. Woessner, Jr. Heparan sulfate proteoglycans as extracellular docking molecules for matrilysin (matrix metalloproteinase 7). J. Biol. Chem. 275:4183–4191, 2000.
Zarbock, A., and K. Ley. Neutrophil adhesion and activation under flow. Microcirculation 16:31–42, 2009.
Zcharia, E., J. Jia, X. Zhang, L. Baraz, U. Lindahl, T. Peretz, I. Vlodavsky, and J. P. Li. Newly generated heparanase knock-out mice unravel co-regulation of heparanase and matrix metalloproteinases. PLoS One 4:e5181, 2009.
Zuurbier, C. J., C. Demirci, A. Koeman, H. Vink, and C. Ince. Short-term hyperglycemia increases endothelial glycocalyx permeability and acutely decreases lineal density of capillaries with flowing red blood cells. J. Appl. Physiol. 99:1471–1476, 2005.
Zweifach, B. W. Structural makeup of capillary wall. Ann. N. Y. Acad. Sci. 61:670–677, 1955.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4