Aboy, M., R. Hornero, D. Abásolo, and D. Álvarez. Interpretation of the Lempel–Ziv complexity measure in the context of biomedical signal analysis. IEEE Trans. Biomed. Eng. 53:2282–2288, 2006.
Anninos, P. A., A. V. Adamopoulos, A. Kotini, and N. Tsagas. Nonlinear analysis of brain activity in magnetic influenced Parkinson patients. Brain Topogr. 13:135–144, 2000.
Bosboom, J. L., D. Stoffers, C. J. Stam, B. W. van Dijk, J. Verbunt, H. W. Berendse, and E. Ch. Wolters. Resting state oscillatory brain dynamics in Parkinson’s disease: an MEG study. Clin. Neurophysiol. 117:2521–2531, 2006.
Bosboom, J. L., D. Stoffers, E. Ch. Wolters, C. J. Stam, and H. W. Berendse. MEG resting state functional connectivity in Parkinson’s disease related dementia. J. Neural Transm. 116:193–202, 2009.
Cassidy, M., and P. Brown. Task-related EEG–EEG coherence depends on dopaminergic activity in Parkinson’s disease. Neuroreport 26:703–707, 2001.
Eckmann, J. P., and D. Ruelle. Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems. Physica D 56:185–187, 1992.
Ferenets, R., T. Lipping, A. Anier, V. Jäntti, S. Melto, and S. Hovilehto. Comparison of entropy and complexity measures for the assessment of depth of sedation. IEEE Trans. Biomed. Eng. 53:1067–1077, 2006.
Fernández, A., R. Hornero, C. Gómez, A. Turrero, P. Gil-Gregorio, J. Matías-Santos, and T. Ortiz. Complexity analysis of spontaneous brain activity in Alzheimer disease and mild cognitive impairment: an MEG study. Alzheimer Dis. Assoc. Disord. 24:182–189, 2010.
Fernández, A., J. Quintero, R. Hornero, P. Zuluaga, M. Navas, C. Gómez, J. Escudero, N. García-Campos, J. Biederman, and T. Ortiz. Complexity analysis of spontaneous brain activity in attention-deficit/hyperactivity disorder: diagnostic implications. Biol. Psychiatry 65:571–577, 2009.
Gómez, C., R. Hornero, D. Abásolo, A. Fernández, and J. Escudero. Analysis of MEG background activity in Alzheimer’s disease using nonlinear methods and ANFIS. Ann. Biomed. Eng. 37:586–594, 2009.
Gómez, C., R. Hornero, D. Abásolo, A. Fernández, and M. López. Complexity analysis of the magnetoencephalogram background activity in Alzheimer’s disease patients. Med. Eng. Phys. 28:851–859, 2006.
Gusev, V. D., L. A. Nemytikova, and N. A. Chuzhanova. On the complexity measures of genetic sequences. Bioinformatics 15:994–999, 1999.
Hämäläinen, M., R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa. Magnetoencephalograpy—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 65:413–497, 1993.
Hornero, R., D. Abásolo, J. Escudero, and C. Gómez. Nonlinear analysis of electroencephalogram and magnetoencephalogram recordings in patients with Alzheimer’s disease. Philos. Trans. R. Soc. A 367:317–336, 2009.
Hughes, A. J., Y. Ben-Shlomo, S. E. Daniel, and A. J. Lees. What features improve the accuracy of clinical diagnosis in Parkinson’s disease: a clinicopathologic study. Neurology 42:1142–1146, 1992.
Hughes, A. J., Y. Ben-Shlomo, S. E. Daniel, and A. J. Lees. Improved accuracy of clinical diagnosis of Lewy body Parkinson’s disease. Neurology 57:1497–1499, 2001.
Jankovic, J. Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 79:368–376, 2008.
Jeong, J., J. H. Chae, S. Y. Kim, and S. H. Han. Nonlinear dynamic analysis of the EEG in patients with Alzheimer’s disease and vascular dementia. J. Clin. Neurophysiol. 18:58–67, 2001.
Kaspar, F., and H. G. Schuster. Easily calculable measure for the complexity of spatiotemporal patterns. Phys. Rev. A 36:842–848, 1987.
Kotini, A., P. Anninos, A. Adamopoulos, and P. Prassopoulos. Low-frequency MEG activity and MRI evaluation in Parkinson’s disease. Brain Topogr. 18:59–63, 2005.
Kyriazis, M. Practical applications of chaos theory to the modulation of human ageing: nature prefers chaos to regularity. Biogerontology 4:75–90, 2003.
Lempel, A., and J. Ziv. On the complexity of finite sequences. IEEE Trans. Inf. Theory 22:75–81, 1976.
Méndez, M. A., P. Zuluaga, R. Hornero, C. Gómez, J. Escudero, A. Rodríguez-Palancas, T. Ortiz, and A. Fernández. Complexity analysis of spontaneous brain activity: effects of depression and antidepressant treatment. J. Psychopharm. 2011. doi:10.1177/0269881111408966.
Moore, D. J., A. B. West, V. L. Dawson, and T. M. Dawson. Molecular pathophysiology of Parkinson’s disease. Annu. Rev. Neurosci. 28:57–87, 2005.
Müller, V., W. Lutzenberger, F. Pulvermüller, B. Mohr, and N. Birbaumer. Investigation of brain dynamics in Parkinson’s disease by methods derived from nonlinear dynamics. Exp. Brain Res. 137:103–110, 2001.
Nutt, J. G., and G. F. Wooten. Diagnosis and initial management of Parkinson’s disease. N. Engl. J. Med. 353:1021–1027, 2005.
Pezard, L., R. Jech, and E. Růzicka. Investigation of non-linear properties of multichannel EEG in the early stages of Parkinson’s disease. Clin. Neurophysiol. 112:38–45, 2001.
Rapp, P. E., A. M. Albano, I. D. Zimmerman, and M. A. Jiminez-Montano. Phase-randomized surrogates can produce spurious identifications of nonrandom structure. Phys. Lett. A 192:27–33, 1994.
Serizawa, K., S. Kamei, A. Morita, M. Hara, T. Mizutani, H. Yoshihashi, M. Yamaguchi, J. Takeshita, and K. Hirayanagi. Comparison of quantitative EEGs between Parkinson disease and age-adjusted normal controls. J. Clin. Neurophysiol. 25:361–366, 2008.
Silberstein, P., A. Pogosyan, A. A. Kühn, G. Hotton, S. Tisch, A. Kupsch, P. Dowsey-Limousin, M. I. Hariz, and P. Brown. Cortico-cortical coupling in Parkinson’s disease and its modulation by therapy. Brain 128:1277–1291, 2005.
Simon, R., M. D. Radmacher, K. Dobbin, and L. M. McShane. Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J. Natl Cancer Inst. 95:14–18, 2003.
Stam, C. J. Use of magnetoencephalography (MEG) to study functional brain networks in neurodegenerative disorders. J. Neurol. Sci. 289:128–134, 2010.
Stam, C. J., B. Jelles, H. A. Achtereekte, S. A. Rombouts, J. P. Slaets, and R. W. Keunen. Investigation of EEG non-linearity in dementia and Parkinson’s disease. Electroencephalogr. Clin. Neurophysiol. 95:309–317, 1995.
Stam, K. J., D. L. Tavy, B. Jelles, H. A. Achtereekte, J. P. Slaets, and R. W. Keunen. Non-linear dynamical analysis of multichannel EEG: clinical applications in dementia and Parkinson’s disease. Brain Topogr. 7:141–150, 1994.
Stoffers, D., J. L. Bosboom, J. B. Deijen, E. C. Wolters, H. W. Berendse, and C. J. Stam. Slowing of oscillatory brain activity is a stable characteristic of Parkinson’s disease without dementia. Brain 130:1847–1860, 2007.
Stoffers, D., J. L. Bosboom, J. B. Deijen, E. C. Wolters, C. J. Stam, and H. W. Berendse. Increased cortico-cortical functional connectivity in early-stage Parkinson’s disease: an MEG study. Neuroimage 41:212–222, 2008.
Yan, R., and R. X. Gao. Complexity as a measure for machine health evaluation. IEEE Trans. Instrum. Meas. 53:1327–1334, 2004.
Zhang, X. S., R, J. Roy, and E. W. Jensen. EEG complexity as a measure of depth of anesthesia for patients. IEEE Trans. Biomed. Eng. 48:1424–1433, 2001.
Zozor, S., P. Ravier, and O. Buttelli. On Lempel–Ziv complexity for multidimensional data analysis. Physica A 345:285–302, 2005.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4