Akiyama, Y., T. Mori, Y. Katayama, and T. Niidome. The effects of PEG grafting level and injection dose on gold nanorod biodistribution in the tumor-bearing mice. J. Control. Release 139:81–84, 2009.
Alkilany, A. M., and C. J. Murphy. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J. Nanopart. Res. 12:2313–2333, 2010.
Alkilany, A. M., P. K. Nagaria, C. R. Hexel, T. J. Shaw, C. J. Murphy, and M. D. Wyatt. Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small 5:701–708, 2009.
Alkilany, A. M., L. B. Thompson, S. P. Boulos, P. N. Sisco, and C. J. Murphy. Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv. Drug Deliv. Rev., 2011. doi:10.1016/j.addr.2011.03.005.
A. S. A. Al-Sherbini. Thermal reshaping of gold nanorods in micellar solution of water/glycerol mixtures. J. Nanomater. 2010:Article ID 569462, 2010.
Altansukh, B., J. Yao, and D. Wang. Synthesis and characterization of gold nanorods by a seeding growth method. J. Nanosci. Nanotechnol. 9:1300–1303, 2009.
Austin, M. D., W. C. W. Chan, and S. N. Bhatia. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4:11–18, 2004.
Chakravarty, P., R. Marches, N. S. Zimmerman, A. D. E. Swafford, P. Bajaj, I. H. Musselman, P. Pantano, R. K. Draper, and E. S. Vitetta. Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes. Proc. Natl. Acad. Sci. USA 105:8697–8702, 2008.
Chen, Y. S., W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emelianov. Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Opt. Express 18:8867–8878, 2010.
Chen, C. L., L. R. Kuo, C. L. Chang, Y. K. Hwu, C. K. Huang, S. Y. Lee, K. Chen, S. J. Lin, J. D. Huang, and Y. Y. Chen. In situ real-time investigation of cancer cell photothermolysis mediated by excited gold nanorod surface plasmons. Biomaterials 31:4104–4112, 2010.
Chen, J., D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, and X. Li. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett. 7:1318–1322, 2007.
Chithrani, B. D., and W. C. W. Chan. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 7:1542–1550, 2007.
Chithrani, B. D., A. A. Ghazani, and W. C. W. Chan. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6:662–668, 2006.
Choi, W. I., J.-Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, and G. Tae. Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano 5:1995–2003, 2011.
Daniel, M. C., and D. Astruc. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104:293–346, 2004.
DeVries, G. A., M. Brunnbauer, Y. Hu, A. M. Jackson, B. Long, B. T. Neltner, O. Uzun, B. H. Wunsch, and F. Stellacci. Divalent metal nanoparticles. Science 315:358–361, 2007.
Dickerson, E. B., E. C. Dreaden, X. Huang, I. H. El-Sayed, H. Chu, S. Pushpanketh, J. F. McDonald, and M. A. El-Sayed. Gold nanorods assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett. 269:57–66, 2008.
Ding, H., K. T. Yong, I. Roy, H. E. Pudavar, W. C. Law, E. J. Bergey, and P. N. Prasad. Gold nanorods coated with multilayer polyelectrolyte as contrast agents for multimodal imaging. J. Phys. Chem. C 111:12552–12557, 2007.
Durr, N. J., T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar. Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett. 7:941–945, 2007.
Eghtedari, M., A. Oraevsky, J. A. Copland, N. Kotov, A. Conjusteau, and M. Motamedi. High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system. Nano Lett. 7:1914–1918, 2007.
El-Sayed, I. H., X. H. Huang, and M. A. El-Sayed. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett. 5:829–834, 2005.
Gans, R. Form of ultramicroscopic particles of silver. Ann. Phys. 47:270–284, 1915.
Ghosh, P., G. Han, M. De, C. K. Kim, and V. M. Rotello. Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev. 60:1307–1315, 2008.
Hauck, T. S., A. A. Ghazani, and W. C. W. Chan. Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small 4:153–159, 2008.
Huang, H. C., S. Barua, D. B. Kay, and K. Rege. Simultaneous enhancement of photothermal stability and gene delivery efficacy of gold nanorods using polyelectrolytes. ACS Nano 3:2941–2952, 2009.
Huang, X., I. H. El-Sayed, and M. A. El-Sayed. Applications of gold nanorods for cancer imaging and photothermal therapy. Methods Mol. Biol. 624:343–357, 2010.
Huang, X. H., I. H. El-Sayed, W. Qian, and M. A. El-Sayed. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128:2115–2120, 2006.
Huang, X., I. H. El-Sayed, W. Qian, and M. A. El-Sayed. Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnosis marker. Nano Lett. 7:1591–1597, 2007.
Huang, X., P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 23:217–228, 2008.
Huang, X., S. Neretina, and M. A. El-Sayed. Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv. Mater. 21:4880–4910, 2009.
Huang, H. C., K. Rege, and J. J. Heys. Spatiotemporal temperature distribution and cancer cell death in response to extracellular hyperthermia induced by gold nanorods. ACS Nano 4:2892–2900, 2010.
Imura, K., T. Nagahara, and H. Okamoto. Plasmon mode imaging of single gold nanorods. J. Am. Chem. Soc. 126:12730–12731, 2004.
Jain, P. K., X. H. Huang, I. H. El-Sayed, and M. A. El-Sayed. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology and medicine. Acc. Chem. Res. 41:1578–1586, 2008.
Jana, N. R. Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles. Small 1:875–882, 2005.
Jelveh, S., and D. B. Chithrani. Gold nanostructures as a platform for combinational therapy in future cancer therapeutics. Cancers 3:1081–1110, 2011.
Kelly, K. L., E. Coronado, L. L. Zhao, and G. C. Schatz. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107:668–677, 2003.
Kim, J.-Y., W. I. Choi, Y. H. Kim, G. Tae, S. Y. Lee, K. Kim, and I. C. Kwon. In-vivo tumor targeting of pluronic-based nano-carriers. J. Control. Release 147:109–117, 2010.
Kim, K., S.-W. Huang, S. Ashkenazi, M. O’Donnell, A. Agarwal, N. A. Kotov, M. F. Denny, and M. J. Kaplan. Photoacoustic imaging of early inflammatory response using gold nanorods. Appl. Phys. Lett. 90:223901, 2007.
Kim, J., S. Park, J. E. Lee, S. M. Jin, J. H. Lee, I. S. Lee, I. Yang, J. S. Kim, S. K. Kim, M. H. Cho, and T. Hyeon. Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angew. Chem. Int. Ed. 45:7754–7758, 2006.
Kim, F., J. H. Song, and P. D. Yang. Photochemical synthesis of gold nanorods. J. Am. Chem. Soc. 124:14316–14317, 2002.
Kim, E., J. Yang, J. Choi, J. S. Suh, Y. M. Huh, and S. Haam. Synthesis of gold nanorod-embedded polymeric nanoparticles by a nanoprecipitation method for use as photothermal agents. Nanotechnology 20:365602, 2009.
Lal, S., S. E. Clare, and N. J. Halas. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc. Chem. Res. 41:1842–1851, 2008.
Li, J. L., D. Day, and M. Gu. Ultra-low energy threshold for photothermal therapy of cancer using transferrin-conjugated gold nanorods. Adv. Mater. 20:3866–3871, 2008.
Li, Z., P. Huang, X. Zhang, J. Lin, S. Yang, B. Liu, F. Gao, P. Xi, Q. Ren, and D. Cui. RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy. Mol. Pharm. 7:94–104, 2010.
Li, Y., W. Lu, Q. Huang, M. Huang, C. Li, and W. Chen. Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine 5:1161–1171, 2010.
Liu, X., Q. Dai, L. Austin, J. Coutts, G. Knowles, J. H. Zou, H. Chen, and Q. Huo. A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J. Am. Chem. Soc. 130:2780–2782, 2008.
Lu, W., C. Y. Xiong, G. D. Zhang, Q. Huang, R. Zhang, J. Z. Zhang, and C. Li. Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres. Clin. Cancer Res. 15:876–886, 2009.
Marquis, B. J., S. A. Love, K. L. Braun, and C. L. Haynes. Analytical methods to assess nanoparticle toxicity. Analyst 134:425–439, 2009.
Melancon, M. P., W. Lu, Z. Yang, R. Zhang, Z. Cheng, A. M. Elliot, J. Stafford, T. Olson, J. Z. Zhang, and C. Li. In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptors for photothermal ablation therapy. Mol. Cancer Ther. 7:1730–1739, 2008.
Mie, G. Contribution to the optics of turbid media especially colloidal metal suspensions. Ann. Phys. 25:377–445, 1908.
Murphy, C. J., A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc. Chem. Res. 41:1721–1730, 2008.
Murphy, C. J., T. K. Sau, A. M. Gole, C. J. Orendorff, J. X. Gao, L. Gou, S. E. Hunyadi, and T. Li. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B 109:13857–13870, 2005.
Niidome, Y., K. Honda, K. Higashimoto, H. Kawazumi, S. Yamada, N. Nakashima, Y. Sasaki, Y. Ishida, and J. Kikuchi. Surface modification of gold nanorods with synthetic cationic lipids. Chem. Commun. 36:3777–3779, 2007.
Niidome, T., A. Ohga, Y. Akiyama, K. Watanabe, Y. Niidome, T. Mori, and Y. Katayama. Controlled release of PEG chain from gold nanorods: targeted delivery to tumor. Bioorg. Med. Chem. 18:4453–4458, 2010.
Niidome, T., M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome. PEG-modified gold nanorods with a stealth character for in vivo applications. J. Control Release 114:343–347, 2006.
Obare, S. O., N. R. Jana, and C. J. Murphy. Preparation of polystyrene and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes. Nano Lett. 1:601–603, 2001.
Oldenburg, S. J., R. D. Averitt, and S. L. Westcott. Nanoengineering of optical resonances. Chem. Phys. Lett. 288:243–247, 1998.
Oldenburg, A. L., M. N. Hansen, T. S. Ralston, A. Wei, and S. A. Boppart. Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography. J. Mater. Chem. 19:6407–6411, 2009.
Park, H. J., C. S. Ah, W. J. Kim, I. S. Choi, K. P. Lee, and W. S. Yun. Temperature-induced control of aspect ratio of gold nanorods. J. Vac. Sci. Technol. A 24:1323–1326, 2006.
Pastoriza-Santos, I., J. Perez-Juste, and L. M. Liz-Marzan. Silica-coating and hydrophobation of CTAB-stabilized gold nanorods. Chem. Mater. 18:2465–2467, 2006.
Peer, D., J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, and R. Langer. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2:751–760, 2007.
Perez-Juste, J., L. M. Liz-Marzan, S. Carnie, D. Y. C. Chan, and P. Mulvaney. Electric-field-directed growth for gold nanorods. Adv. Funct. Mater. 14:571–579, 2004.
Perez-Juste, J., I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney. Gold nanorods: synthesis, characterization and applications. Coord. Chem. Rev. 249:1870–1901, 2005.
Pissuwan, D., S. Valenzuela, and M. B. Cortie. Prospects for gold nanorod particles in diagnostic and therapeutic applications. Biotechnol. Genet. Eng. Rev. 25:93–112, 2008.
Prasad, B. R., N. Nikolskaya, D. Connolly, T. J. Smith, S. J. Byrne, V. A. Gérard, Y. K. Gun’ko, and Y. Rochev. Long-term exposure of CdTe quantum dots on PC12 cellular activity and the determination of optimum non-toxic concentrations for biological use. J. Nanobiotechnol. 8:7, 2010.
Rayavarapu, R. G., W. Petersen, L. Hartsuiker, P. Chin, H. Janssen, F. W. van Leeuwen, C. Otto, S. Manohar, and T. G. van Leeuwen. In vitro toxicity studies of polymer-coated gold nanorods. Nanotechnology 21:145101, 2010.
Robinson, J. T., S. M. Tabakman, Y. Liang, H. Wang, H. Sanchez Casalongue, D. Vinh, and H. Dai. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J. Am. Chem. Soc. 133:6825–6831, 2011.
Salem, A. K., P. C. Searson, and K. W. Leong. Multifunctional nanorods for gene delivery. Nat. Mater. 2:668–671, 2003.
Smith, D. K., and B. A. Korgel. The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Langmuir 24:644–649, 2008.
Takahashi, H., T. Niidome, T. Kawano, S. Yamada, and Y. Niidome. Surface modification of gold nanorods using layer-by-layer technique for cellular uptake. J. Nanopart. Res. 10:221–228, 2008.
Takahashi, H., Y. Niidome, T. Niidome, K. Kaneko, H. Kawasaki, and S. Yamada. Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity. Langmuir 22:2–5, 2006.
Tong, L., Q. Wei, A. Wei, and J. X. Cheng. Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. Photochem. Photobiol. 85:21–32, 2009.
Tong, L., Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng. Gold nanorods mediate tumor cell death by compromising membrane integrity. Adv. Mater. 19:3136–3141, 2007.
von Maltzahn, G., J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res. 69:3892–3900, 2009.
Wang, H. F., T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng. In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc. Natl. Acad. Sci. USA 102:15752–15756, 2005.
Wei, A., A. P. Leonov, and Q. Wei. Gold nanorods: multifunctional agents for cancer imaging and therapy. Methods Mol. Biol. 624:119–130, 2010.
Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol. 19:316–317, 2001.
Xu, X., and M. B. Cortie. Shape change and color gamut in gold nanorods, dumbbells and dog-bones. Adv. Funct. Mater. 16:2170–2176, 2006.
Yang, D. P., and D. X. Cui. Advances and prospects of gold nanorods. Chem. Asian J. 3:2010–2022, 2008.
Zhang, J. Z. Biomedical applications of shape-controlled plasmonic nanostructures: a case study of hollow gold nanospheres for photothermal ablation therapy of cancer. J. Phys. Chem. Lett. 1:686–695, 2010.
Zharov, V. P., E. N. Galitovskaya, C. Johnson, and T. Kelly. Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy. Lasers Surg. Med. 37:219–226, 2005.
Zhu, J., K. T. Yong, I. Roy, R. Hu, H. Ding, L. Zhao, M. T. Swihart, G. S. He, Y. Cui, and P. N. Prasad. Additive controlled synthesis of gold nanorods (GNRs) for two-photon luminescence imaging of cancer cells. Nanotechnology 21:285106–285113, 2010.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4