A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-011-0369-3 below:

Three-Dimensional Modeling and Quantitative Analysis of Gap Junction Distributions in Cardiac Tissue

  • Akar, F. G., et al. Mechanisms underlying conduction slowing and arrhythmogenesis in nonischemic dilated cardiomyopathy. Circ. Res. 95(7):717–725, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Akar, F. G., et al. Dynamic changes in conduction velocity and gap junction properties during development of pacing-induced heart failure. Am. J. Physiol. Heart Circ. Physiol. 293(2):H1223–H1230, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Angst, B. D., et al. Dissociated spatial patterning of gap junctions and cell adhesion junctions during postnatal differentiation of ventricular myocardium. Circ. Res. 80(1):88–94, 1997.

    PubMed  CAS  Google Scholar 

  • Bassien-Capsa, V., et al. Structural, functional and metabolic remodeling of rat left ventricular myocytes in normal and in sodium-supplemented pregnancy. Cardiovasc. Res. 69(2):423–431, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Beardslee, M. A., et al. Rapid turnover of connexin43 in the adult rat heart. Circ. Res. 83(6):629–635, 1998.

    PubMed  CAS  Google Scholar 

  • Bishop, S. P., et al. Regional myocyte size in normotensive and spontaneously hypertensive rats. Hypertension 1(4):378–383, 1979.

    PubMed  CAS  Google Scholar 

  • Camelliti, P., et al. Fibroblast network in rabbit sinoatrial node: structural and functional identification of homogeneous and heterogeneous cell coupling. Circ. Res. 94(6):828–835, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, S. E., A. M. Gerdes, and T. D. Smith. Comparison of regional differences in cardiac myocyte dimensions in rats, hamsters, and guinea pigs. Anat. Rec. 219(1):53–59, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Clayton, R. H., et al. Models of cardiac tissue electrophysiology: progress, challenges and open questions. Prog. Biophys. Mol. Biol. 104(1–3):22–48, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Dolber, P. C., et al. Distribution of gap junctions in dog and rat ventricle studied with a double-label technique. J. Mol. Cell. Cardiol. 24(12):1443–1457, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Emdad, L., et al. Gap junction remodeling in hypertrophied left ventricles of aortic-banded rats: prevention by angiotensin II type 1 receptor blockade. J. Mol. Cell. Cardiol. 33(2):219–231, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Gerdes, A. M., et al. Regional differences in myocyte size in normal rat heart. Anat. Rec. 215(4):420–426, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Gourdie, R. G., et al. Immunolabelling patterns of gap junction connexins in the developing and mature rat heart. Anat. Embryol. (Berl.) 185(4):363–378, 1992.

    Article  CAS  Google Scholar 

  • Hill, J. A., and E. N. Olson. Cardiac plasticity. N. Engl. J. Med. 358(13):1370–1380, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Kakkar, R., and R. T. Lee. Intramyocardial fibroblast myocyte communication. Circ. Res. 106(1):47–57, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Kohl, P., et al. Electrical coupling of fibroblasts and myocytes: relevance for cardiac propagation. J. Electrocardiol. 38(4):45–50, 2005.

    Article  PubMed  Google Scholar 

  • Kostin, S., et al. Connexin 43 expression and distribution in compensated and decompensated cardiac hypertrophy in patients with aortic stenosis. Cardiovasc. Res. 62(2):426–436, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Lampe, P. D., and A. F. Lau. Regulation of gap junctions by phosphorylation of connexins. Arch. Biochem. Biophys. 384(2):205–215, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Lampe, P. D., and A. F. Lau. The effects of connexin phosphorylation on gap junctional communication. Int. J. Biochem. Cell Biol. 36(7):1171–1186, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Langendorff, O. Untersuchungen am überlebenden Säugetierherzen. Pflügers Arch. 61:291–332, 1895.

    Article  Google Scholar 

  • Lasher, R. A., R. W. Hitchcock, and F. B. Sachse. Towards modeling of cardiac micro-structure with catheter-based confocal microscopy: a novel approach for dye delivery and tissue characterization. IEEE Trans. Med. Imaging 28(8):1156–1164, 2009.

    Article  PubMed  Google Scholar 

  • Peters, N. S. New insights into myocardial arrhythmogenesis: distribution of gap-junctional coupling in normal, ischaemic and hypertrophied human hearts. Clin. Sci. (Lond.) 90(6):447–452, 1996.

    CAS  Google Scholar 

  • Peters, N. S., et al. Spatiotemporal relation between gap junctions and fascia adherens junctions during postnatal development of human ventricular myocardium. Circulation 90(2):713–725, 1994.

    PubMed  CAS  Google Scholar 

  • Poelzing, S., et al. Heterogeneous connexin43 expression produces electrophysiological heterogeneities across ventricular wall. Am. J. Physiol. Heart Circ. Physiol. 286(5):H2001–H2009, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Press, W. H. Numerical Recipes in C: The Art of Scientific Computing (2nd ed.), Vol. xxvi. New York: Cambridge University Press, p. 994, 1992.

    Google Scholar 

  • Roberts, S. F., J. G. Stinstra, and C. S. Henriquez. Effect of nonuniform interstitial space properties on impulse propagation: a discrete multidomain model. Biophys. J. 95(8):3724–3737, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Saez, J. C., et al. Regulation of gap junctions by protein phosphorylation. Braz. J. Med. Biol. Res. 31(5):593–600, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Saffitz, J. E., R. B. Schuessler, and K. A. Yamada. Mechanisms of remodeling of gap junction distributions and the development of anatomic substrates of arrhythmias. Cardiovasc. Res. 42(2):309–317, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Salameh, A., et al. Cyclic mechanical stretch induces cardiomyocyte orientation and polarization of the gap junction protein connexin43. Circ. Res. 106(10):1592–1602, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Sato, T., et al. Altered expression of connexin43 contributes to the arrhythmogenic substrate during the development of heart failure in cardiomyopathic hamster. Am. J. Physiol. Heart Circ. Physiol. 294(3):H1164–H1173, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Seidel, T., A. Salameh, and S. Dhein. A simulation study of cellular hypertrophy and connexin lateralization in cardiac tissue. Biophys. J. 99(9):2821–2830, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Severs, N. J., et al. Remodelling of gap junctions and connexin expression in heart disease. Biochim. Biophys. Acta 1662(1–2):138–148, 2004.

    PubMed  CAS  Google Scholar 

  • Severs, N. J., et al. Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovasc. Res. 80(1):9–19, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, R. M., and Y. Rudy. Ionic mechanisms of propagation in cardiac tissue: roles of the sodium and L-type calcium currents during reduced excitability and decreased gap junction coupling. Circ. Res. 81(5):727–741, 1997.

    PubMed  CAS  Google Scholar 

  • Souders, C. A., S. L. K. Bowers, and T. A. Baudino. Cardiac fibroblast: the renaissance cell. Circ. Res. 105(12):1164–1176, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Spach, M. S., et al. Electrophysiological effects of remodeling cardiac gap junctions and cell size: experimental and model studies of normal cardiac growth. Circ. Res. 86(3):302–311, 2000.

    PubMed  CAS  Google Scholar 

  • Spach, M. S., et al. Cell size and communication: role in structural and electrical development and remodeling of the heart. Heart Rhythm 1(4):500–515, 2004.

    Article  PubMed  Google Scholar 

  • Stinstra, J., R. MacLeod, and C. Henriquez. Incorporating histology into a 3D microscopic computer model of myocardium to study propagation at a cellular level. Ann. Biomed. Eng. 38(4):1399–1414, 2010.

    Article  PubMed  Google Scholar 

  • Teunissen, B. E. J., H. J. Jongsma, and M. F. A. Bierhuizen. Regulation of myocardial connexins during hypertrophic remodelling. Eur. Heart J. 25(22):1979–1989, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., and Y. Rudy. Action potential propagation in inhomogeneous cardiac tissue: safety factor considerations and ionic mechanism. Am. J. Physiol. Heart Circ. Physiol. 278(4):H1019–H1029, 2000.

    PubMed  CAS  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4