A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-011-0362-x below:

In Vivo Contrast-Enhanced MR Imaging of Direct Infusion into Rat Peripheral Nerves

Abstract

Direct infusion, or convection-enhanced delivery (CED), into peripheral nerves may provide a method for delivering substances to the intrathecal space or specific fiber bundles entering the spinal cord. To better understand this potential delivery technique, we have characterized the extracellular transport of macromolecular agents from peripheral nerves to the spinal cord in magnetic resonance (MR) imaging studies. High-resolution dynamic contrast-enhanced MR imaging at 11.1 T was used to monitor and characterize in vivo the extracellular transport dynamics of Gd-DTPA–albumin tracer during CED into rat sciatic nerves. Extracellular tracers followed peripheral nerves towards the spinal cord and at vertebral levels L4 and L5 appeared to enter the cerebrospinal fluid and nerve roots. Uptake directly into spinal cord tissues (white and gray matter) appeared to be limited. Spatial distribution patterns within spinal cord regions depended on CED factors, including cannula placement, and underlying tissue structures including peripheral nerve branching and membrane structures at nerve root entry. The applied MR techniques allowed for visualization and quantification of tracer spread and distribution within the rat spinal cord region. The results show that CED into peripheral nerves provides an alternative route for delivering therapeutics to nerve roots and the intrathecal space surrounding the spinal cord.

This is a preview of subscription content, log in via an institution to check access.

Access this article Subscribe and save

Springer+ Basic

€34.99 /Month

Subscribe now Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others Explore related subjectsDiscover the latest articles and news from researchers in related subjects, suggested using machine learning. Abbreviations
CED:

Convection-enhanced delivery

CSF:

Cerebrospinal fluid

CNS:

Central nervous system

DCE-MRI:

Dynamic contrast-enhanced MRI

FOV:

Field of view

Gd-DTPA:

Gadolinium diethylenetriamine penta-acetic acid

GM:

Gray matter

PBS:

Phosphate buffered saline

PEEK:

Polyether-ether-ketone

RF:

Radio-frequency

TR:

Time of repetition

TE:

Time of echo

WM:

White matter

References
  1. Asato, F., M. Butler, H. Blomberg, and T. Gordh. Variation in rat sciatic nerve anatomy: implications for a rat model of neuropathic pain. J. Peripher. Nerv. Syst. 5(1):19–21, 2000.

    Article  PubMed  CAS  Google Scholar 

  2. Behr, V. C., T. Weber, T. Neuberger, M. Vroemen, N. Weidner, U. Bogdahn, A. Haase, P. M. Jakob, and C. Faber. High-resolution MR imaging of the rat spinal cord in vivo in a wide-bore magnet at 17.6 Tesla. Magn. Reson. Mat. Phys. Biol. Med. 17(3–6):353–358, 2004.

    Article  CAS  Google Scholar 

  3. Bilgen, M., R. Abbe, and P. A. Narayana. Dynamic contrast-enhanced MRI of experimental spinal cord injury: in vivo serial studies. Magn. Reson. Med. 45(4):614–622, 2001.

    Article  PubMed  CAS  Google Scholar 

  4. Bobo, R. H., D. W. Laske, A. Akbasak, P. F. Morrison, R. L. Dedrick, and E. H. Oldfield. Convection-enhanced delivery of macromolecules in the brain. Proc. Natl. Acad. Sci. USA 91(6):2076–2080, 1994.

    Article  PubMed  CAS  Google Scholar 

  5. Boskamp, E. B. Improved surface coil imaging in MR—decoupling of the excitation and receiver coils. Radiology 157(2):449–452, 1985.

    PubMed  CAS  Google Scholar 

  6. Chen, X. M., G. W. Astary, H. Sepulveda, T. H. Mareci, and M. Sarntinoranont. Quantitative assessment of macromolecular concentration during direct infusion into an agarose hydrogel phantom using contrast-enhanced MRI. Magn. Reson. Imaging 26(10):1433–1441, 2008.

    Article  PubMed  CAS  Google Scholar 

  7. Chen, M. Y., R. R. Lonser, P. F. Morrison, L. S. Governale, and E. H. Oldfield. Variables affecting convection-enhanced delivery to the striatum: a systematic examination of rate of infusion, cannula size, infusate concentration, and tissue-cannula sealing time. J. Neurosurg. 90(2):315–320, 1999.

    Article  PubMed  CAS  Google Scholar 

  8. Franconi, F., L. Lemaire, L. Marescaux, P. Jallet, and J. J. Le Jeune. In vivo quantitative microimaging of rat spinal cord at 7T. Magn. Reson. Med. 44(6):893–898, 2000.

    Article  PubMed  CAS  Google Scholar 

  9. Himango, W. A., and F. N. Low. Fine structure of a lateral recess of subarachnoid space in rat. Anat. Rec. 171(1):1–20, 1971.

    Article  PubMed  CAS  Google Scholar 

  10. Krauze, M. T., T. R. McKnight, Y. Yamashita, J. Bringas, C. O. Noble, R. Saito, K. Geletneky, J. Forsayeth, M. S. Berger, P. Jackson, J. W. Park, and K. S. Bankiewicz. Real-time visualization and characterization of liposomal delivery into the monkey brain by magnetic resonance imaging. Brain Res. Protoc. 16(1–3):20–26, 2005.

    Article  CAS  Google Scholar 

  11. Lieberman, D. M., D. W. Laske, P. F. Morrison, K. S. Bankiewicz, and E. H. Oldfield. Convection-enhanced distribution of large molecules in gray matter during interstitial drug infusion. J. Neurosurg. 82(6):1021–1029, 1995.

    Article  PubMed  CAS  Google Scholar 

  12. Lonser, R. R., N. Gogate, P. F. Morrison, J. D. Wood, and E. H. Oldfield. Direct convective delivery of macromolecules to the spinal cord. J. Neurosurg. 89(4):616–622, 1998.

    Article  PubMed  CAS  Google Scholar 

  13. Lonser, R. R., S. Walbridge, K. Garmestani, J. A. Butman, H. A. Walters, A. O. Vortmeyer, P. F. Morrison, M. W. Brechbiel, and E. H. Oldfield. Successful and safe perfusion of the primate brainstem: in vivo magnetic resonance imaging of macromolecular distribution during infusion. J. Neurosurg. 97(4):905–913, 2002.

    Article  PubMed  Google Scholar 

  14. Lonser, R. R., R. J. Weil, P. F. Morrison, L. S. Governale, and E. H. Oldfield. Direct convective delivery of macromolecules to peripheral nerves. J. Neurosurg. 89(4):610–615, 1998.

    Article  PubMed  CAS  Google Scholar 

  15. Narayana, P., D. Fenyes, and N. Zacharopoulos. In vivo relaxation times of gray matter and white matter in spinal cord. Magn. Reson. Imaging 17(4):623–626, 1999.

    Article  PubMed  CAS  Google Scholar 

  16. Pettersson, C. A. V. Drainage of molecules from subarachnoid space to spinal nerve roots and peripheral-nerve of the rat—a study based on Evans blue–albumin and lanthanum as tracers. Acta Neuropathol. 86(6):636–644, 1993.

    Article  PubMed  CAS  Google Scholar 

  17. Ratliff, J. K., and E. H. Oldfield. Convection-enhanced delivery in intact and lesioned peripheral nerve. J. Neurosurg. 95(6):1001–1011, 2001.

    Article  PubMed  CAS  Google Scholar 

  18. Stopa, B., J. Rybarska, A. Drozd, L. Konieczny, M. Krol, M. Lisowski, B. Piekarska, I. Roterman, P. Spolnik, and G. Zemanek. Albumin binds self-assembling dyes as specific polymolecular ligands. Int. J. Biol. Macromol. 40(1):1–8, 2006.

    Article  PubMed  CAS  Google Scholar 

  19. Tao, L., and C. Nicholson. Diffusion of albumins in rat cortical slices and relevance to volume transmission. Neuroscience 75(3):839–847, 1996.

    Article  PubMed  CAS  Google Scholar 

  20. van den Berg, M. P., S. G. Romeijn, J. C. Verhoef, and F. W. Merkus. Serial cerebrospinal fluid sampling in a rat model to study drug uptake from the nasal cavity. J. Neurosci. Methods 116:99–107, 2002.

    Article  PubMed  Google Scholar 

  21. Williams, P. L., and R. Warwick, eds. Gray’s Anatomy (36th ed.). Philadelphia: W.B. Saunders, 1980, 1578 pp.

  22. Wood, J. D., R. R. Lonser, N. Gogate, P. F. Morrison, and E. H. Oldfield. Convective delivery of macromolecules into the naive and traumatized spinal cords of rats. J. Neurosurg. 90(1):115–120, 1999.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the National Institutes of Health (R21 NS052670). We would like to thank Barbara Beck and Jessica Meloy for their technical assistance in MRI experiments and Dr. Harvey Ramirez for technical assistance in animal surgery. The MRI data were obtained at the Advanced Magnetic Resonance Imaging and Spectroscopy (AMRIS) facility in the McKnight Brain Institute of the University of Florida.

Author information Author notes
  1. Xiaoming Chen

    Present address: Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA

Authors and Affiliations
  1. Department of Mechanical and Aerospace Engineering, University of Florida, 212 MAE-A, Gainesville, FL, 32611, USA

    Xiaoming Chen & Malisa Sarntinoranont

  2. Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA

    Garrett W. Astary

  3. Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA

    Thomas H. Mareci

Authors
  1. Xiaoming Chen
  2. Garrett W. Astary
  3. Thomas H. Mareci
  4. Malisa Sarntinoranont
Corresponding author

Correspondence to Malisa Sarntinoranont.

Additional information

Associate Editor Jeffrey L. Duerk oversaw the review of this article.

About this article Cite this article

Chen, X., Astary, G.W., Mareci, T.H. et al. In Vivo Contrast-Enhanced MR Imaging of Direct Infusion into Rat Peripheral Nerves. Ann Biomed Eng 39, 2823–2834 (2011). https://doi.org/10.1007/s10439-011-0362-x

Download citation

Keywords

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4