A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-011-0351-0 below:

Nondestructive Evaluation of Hydrogel Mechanical Properties Using Ultrasound

References
  1. Armstrong, C. G., W. M. Lai, and V. C. Mow. An analysis of the unconfined compression of articular cartilage. J. Biomech. Eng. 106(2):165–173, 1984.

    Article  PubMed  CAS  Google Scholar 

  2. Ateshian, G. A. The role of interstitial fluid pressurization in articular cartilage lubrication. J. Biomech. 42(9):1163–1176, 2009.

    Article  PubMed  Google Scholar 

  3. Bae, W. C., C. W. Lewis, M. E. Levenston, and R. L. Sah. Indentation testing of human articular cartilage: effects of probe tip geometry and indentation depth on intra-tissue strain. J. Biomech. 39(6):1039–1047, 2006.

    Article  PubMed  Google Scholar 

  4. Bae, W. C., B. L. Schumacher, and R. L. Sah. Indentation probing of human articular cartilage: effect on chondrocyte viability. Osteoarthr. Cartil. 15(1):9–18, 2007.

    Article  PubMed  CAS  Google Scholar 

  5. Bae, W. C., M. M. Temple, D. Amiel, R. D. Coutts, G. G. Niederauer, and R. L. Sah. Indentation testing of human cartilage: sensitivity to articular surface degeneration. Arthritis Rheum. 48(12):3382–3394, 2003.

    Article  PubMed  Google Scholar 

  6. Bland, J. M., and D. G. Altman. Correlation in restricted ranges of data. BMJ 342:d556, 2011.

    Article  PubMed  Google Scholar 

  7. Buckley, A. R., C. W. Putnam, and D. H. Russell. Prolactin as a mammalian mitogen and tumor promoter. Adv. Enzyme Regul. 27:371–391, 1988.

    Article  PubMed  CAS  Google Scholar 

  8. Buckley, C. T., S. D. Thorpe, F. J. O’Brien, A. J. Robinson, and D. J. Kelly. The effect of concentration, thermal history and cell seeding density on the initial mechanical properties of agarose hydrogels. J. Mech. Behav. Biomed. Mater. 2(5):512–521, 2009.

    Article  PubMed  Google Scholar 

  9. Bursac, P. M., T. W. Obitz, S. R. Eisenberg, and D. Stamenovic. Confined and unconfined stress relaxation of cartilage: appropriateness of a transversely isotropic analysis. J. Biomech. 32(10):1125–1130, 1999.

    Article  PubMed  CAS  Google Scholar 

  10. Chiarelli, P., A. Lanata, M. Carbone, and C. Domenici. High frequency poroelastic waves in hydrogels. J. Acoust. Soc. Am. 127(3):1197–1207, 2010.

    Article  PubMed  CAS  Google Scholar 

  11. de Boer, R., W. Ehlers, and Z. Liu. One-dimensional transient wave propagation in fluid saturated incompressible porous media. Arch. Appl. Mech. 63:59–72, 1993.

    Article  Google Scholar 

  12. Eberhardt, A. W., L. M. Keer, J. L. Lewis, and V. Vithoontien. An analytical model of joint contact. J. Biomech. Eng. 112(4):407–413, 1990.

    Article  PubMed  CAS  Google Scholar 

  13. Fox, E. A. Mechanics. New York: Harper and Row, 1967.

    Google Scholar 

  14. Hattori, K., K. Ikeuchi, Y. Morita, and Y. Takakura. Quantitative ultrasonic assessment for detecting microscopic cartilage damage in osteoarthritis. Arthritis Res. Ther. 7(1):R38–R46, 2005.

    Article  PubMed  Google Scholar 

  15. Hattori, K., K. Mori, T. Habata, Y. Takakura, and K. Ikeuchi. Measurement of the mechanical condition of articular cartilage with an ultrasonic probe: quantitative evaluation using wavelet transformation. Clin. Biomech. 18(6):553–557, 2003.

    Article  Google Scholar 

  16. Hattori, K., Y. Takakura, M. Ishimura, Y. Tanaka, T. Habata, and K. Ikeuchi. Differential acoustic properties of early cartilage lesions in living human knee and ankle joints. Arthritis Rheum. 52(10):3125–3131, 2005.

    Article  PubMed  Google Scholar 

  17. Hattori, K., Y. Takakura, H. Ohgushi, T. Habata, K. Uematsu, and K. Ikeuchi. Novel ultrasonic evaluation of tissue-engineered cartilage for large osteochondral defects—non-invasive judgment of tissue-engineered cartilage. J. Orthop. Res. 23(5):1179–1183, 2005.

    Article  PubMed  Google Scholar 

  18. Hattori, K., Y. Takakura, H. Ohgushi, T. Habata, K. Uematsu, J. Yamauchi, K. Yamashita, T. Fukuchi, M. Sato, and K. Ikeuchi. Quantitative ultrasound can assess the regeneration process of tissue-engineered cartilage using a complex between adherent bone marrow cells and a three-dimensional scaffold. Arthritis Res. Ther. 7(3):R552–R559, 2005.

    Article  PubMed  Google Scholar 

  19. Johnson, E. M., D. A. Berk, R. K. Jain, and W. M. Deen. Diffusion and partitioning of proteins in charged agarose gels. Biophys. J. 68(4):1561–1568, 1995.

    Article  PubMed  CAS  Google Scholar 

  20. Kaleva, E., S. Saarakkala, J. Töyräs, H. J. Nieminen, and J. S. Jurvelin. In vitro comparison of time-domain, frequency-domain and wavelet ultrasound parameters in diagnostics of cartilage degeneration. Ultrasound Med. Biol. 34(1):155–159, 2008.

    Article  PubMed  CAS  Google Scholar 

  21. Kelly, D. J., A. Crawford, S. C. Dickinson, T. J. Sims, J. Mundy, A. P. Hollander, P. J. Prendergast, and P. V. Hatton. Biochemical markers of the mechanical quality of engineered hyaline cartilage. J. Mater. Sci. Mater. Med. 18(2):273–281, 2007.

    Article  PubMed  CAS  Google Scholar 

  22. Kino-Oka, M., Y. Maeda, T. Yamamoto, K. Sugawara, and M. Taya. A kinetic modeling of chondrocyte culture for manufacture of tissue-engineered cartilage. J. Biosci. Bioeng. 99(3):197–207, 2005.

    Article  PubMed  CAS  Google Scholar 

  23. Korhonen, R. K., M. S. Laasanen, J. Töyräs, R. Lappalainen, H. J. Helminen, and J. S. Jurvelin. Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage. J. Biomech. 36(9):1373–1379, 2003.

    Article  PubMed  Google Scholar 

  24. Li, L. P., M. D. Buschmann, and A. Shirazi-Adl. A fibril reinforced nonhomogeneous poroelastic model for articular cartilage: inhomogeneous response in unconfined compression. J. Biomech. 33(12):1533–1541, 2000.

    Article  PubMed  CAS  Google Scholar 

  25. Lu, X. L., D. D. Sun, X. E. Guo, F. H. Chen, W. M. Lai, and V. C. Mow. Indentation determined mechanoelectrochemical properties and fixed charge density of articular cartilage. Ann. Biomed. Eng. 32(3):370–379, 2004.

    Article  PubMed  Google Scholar 

  26. Lyyra, T., J. Jurvelin, P. Pitkänen, U. Väätäinen, and I. Kiviranta. Indentation instrument for the measurement of cartilage stiffness under arthroscopic control. Med. Eng. Phys. 17(5):395–399, 1995.

    Article  PubMed  CAS  Google Scholar 

  27. Lyyra, T., I. Kiviranta, U. Väätäinen, H. J. Helminen, and J. S. Jurvelin. In vivo characterization of indentation stiffness of articular cartilage in the normal human knee. J. Biomed. Mater. Res. 48(4):482–487, 1999.

    Article  PubMed  CAS  Google Scholar 

  28. Lyyra-Laitinen, T., M. Niinimäki, J. Töyräs, R. Lindgren, I. Kiviranta, and J. S. Jurvelin. Optimization of the arthroscopic indentation instrument for the measurement of thin cartilage stiffness. Phys. Med. Biol. 44(10):2511–2524, 1999.

    Article  PubMed  CAS  Google Scholar 

  29. Ma, P. X., and R. Langer. Morphology and mechanical function of long-term in vitro engineered cartilage. J. Biomed. Mater. Res. 44(2):217–221, 1999.

    Article  PubMed  CAS  Google Scholar 

  30. Mak, A. F., W. M. Lai, and V. C. Mow. Biphasic indentation of articular cartilage—I. Theoretical analysis. J. Biomech. 20(7):703–714, 1987.

    Article  PubMed  CAS  Google Scholar 

  31. Mow, V. C., M. C. Gibbs, W. M. Lai, W. B. Zhu, and K. A. Athanasiou. Biphasic indentation of articular cartilage—II. A numerical algorithm and an experimental study. J. Biomech. 22(8–9):853–861, 1989.

    Article  PubMed  CAS  Google Scholar 

  32. Mow, V. C., S. C. Kuei, W. M. Lai, and C. G. Armstrong. Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J. Biomech. Eng. 102(1):73–84, 1980.

    Article  PubMed  CAS  Google Scholar 

  33. Ng, K. W., G. A. Ateshian, and C. T. Hung. Zonal chondrocytes seeded in a layered agarose hydrogel create engineered cartilage with depth-dependent cellular and mechanical inhomogeneity. Tissue Eng. Part A 15(9):2315–2324, 2009.

    Article  PubMed  CAS  Google Scholar 

  34. Nieminen, H. J., S. Saarakkala, M. S. Laasanen, J. Hirvonen, J. S. Jurvelin, and J. Töyräs. Ultrasound attenuation in normal and spontaneously degenerated articular cartilage. Ultrasound Med. Biol. 30(4):493–500, 2004.

    Article  PubMed  Google Scholar 

  35. Nieminen, H. J., J. Töyräs, M. S. Laasanen, and J. S. Jurvelin. Acoustic properties of articular cartilage under mechanical stress. Biorheology 43(3–4):523–535, 2006.

    PubMed  Google Scholar 

  36. Oloyede, A., R. Flachsmann, and N. D. Broom. The dramatic influence of loading velocity on the compressive response of articular cartilage. Connect. Tissue Res. 27(4):211–224, 1992.

    Article  PubMed  CAS  Google Scholar 

  37. Pierce, A. D. Acoustics. New York: McGraw-Hill, 1981.

    Google Scholar 

  38. Roth, V., and V. C. Mow. The intrinsic tensile behavior of the matrix of bovine articular cartilage and its variation with age. J. Bone Joint Surg. Am. 62(7):1102–1117, 1980.

    PubMed  CAS  Google Scholar 

  39. Sabersky, R. H., A. J. Acosta, E. G. Hauptmann, and E. M. Gates. Fluid Flow. Upper Saddle River: Prentice Hall, 1999.

    Google Scholar 

  40. Schulz, R. M., and A. Bader. Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur. Biophys. J. 36(4–5):539–568, 2007.

    Article  PubMed  CAS  Google Scholar 

  41. Setton, L. A., D. M. Elliott, and V. C. Mow. Altered mechanics of cartilage with osteoarthritis: human osteoarthritis and an experimental model of joint degeneration. Osteoarthr. Cartil. 7(1):2–14, 1999.

    Article  PubMed  CAS  Google Scholar 

  42. Silyn-Roberts, H., and N. D. Broom. Fracture behaviour of cartilage-on-bone in response to repeated impact loading. Connect. Tissue Res. 24(2):143–156, 1990.

    Article  PubMed  CAS  Google Scholar 

  43. Solchaga, L. A., K. Penick, V. M. Goldberg, A. I. Caplan, and J. F. Welter. Fibroblast growth factor-2 enhances proliferation and delays loss of chondrogenic potential in human adult bone-marrow-derived mesenchymal stem cells. Tissue Eng. Part A 16(3):1009–1019, 2010.

    Article  PubMed  Google Scholar 

  44. Solchaga, L. A., K. Penick, J. D. Porter, V. M. Goldberg, A. I. Caplan, and J. F. Welter. FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. J. Cell. Physiol. 203(2):398–409, 2005.

    Article  PubMed  CAS  Google Scholar 

  45. Töyräs, J., M. S. Laasanen, S. Saarakkala, M. J. Lammi, J. Rieppo, J. Kurkijärvi, R. Lappalainen, and J. S. Jurvelin. Speed of sound in normal and degenerated bovine articular cartilage. Ultrasound Med. Biol. 29(3):447–454, 2003.

    Article  PubMed  Google Scholar 

  46. Töyräs, J., J. Rieppo, M. T. Nieminen, H. J. Helminen, and J. S. Jurvelin. Characterization of enzymatically induced degradation of articular cartilage using high frequency ultrasound. Phys. Med. Biol. 44(11):2723–2733, 1999.

    Article  PubMed  Google Scholar 

  47. Vasara, A. I., J. S. Jurvelin, L. Peterson, and I. Kiviranta. Arthroscopic cartilage indentation and cartilage lesions of anterior cruciate ligament-deficient knees. Am. J. Sports Med. 33(3):408–414, 2005.

    Article  PubMed  Google Scholar 

  48. Wang, C. C., C. T. Hung, and V. C. Mow. An analysis of the effects of depth-dependent aggregate modulus on articular cartilage stress-relaxation behavior in compression. J. Biomech. 34(1):75–84, 2001.

    Article  PubMed  CAS  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4