Armstrong, C. G., W. M. Lai, and V. C. Mow. An analysis of the unconfined compression of articular cartilage. J. Biomech. Eng. 106(2):165–173, 1984.
Ateshian, G. A. The role of interstitial fluid pressurization in articular cartilage lubrication. J. Biomech. 42(9):1163–1176, 2009.
Bae, W. C., C. W. Lewis, M. E. Levenston, and R. L. Sah. Indentation testing of human articular cartilage: effects of probe tip geometry and indentation depth on intra-tissue strain. J. Biomech. 39(6):1039–1047, 2006.
Bae, W. C., B. L. Schumacher, and R. L. Sah. Indentation probing of human articular cartilage: effect on chondrocyte viability. Osteoarthr. Cartil. 15(1):9–18, 2007.
Bae, W. C., M. M. Temple, D. Amiel, R. D. Coutts, G. G. Niederauer, and R. L. Sah. Indentation testing of human cartilage: sensitivity to articular surface degeneration. Arthritis Rheum. 48(12):3382–3394, 2003.
Bland, J. M., and D. G. Altman. Correlation in restricted ranges of data. BMJ 342:d556, 2011.
Buckley, A. R., C. W. Putnam, and D. H. Russell. Prolactin as a mammalian mitogen and tumor promoter. Adv. Enzyme Regul. 27:371–391, 1988.
Buckley, C. T., S. D. Thorpe, F. J. O’Brien, A. J. Robinson, and D. J. Kelly. The effect of concentration, thermal history and cell seeding density on the initial mechanical properties of agarose hydrogels. J. Mech. Behav. Biomed. Mater. 2(5):512–521, 2009.
Bursac, P. M., T. W. Obitz, S. R. Eisenberg, and D. Stamenovic. Confined and unconfined stress relaxation of cartilage: appropriateness of a transversely isotropic analysis. J. Biomech. 32(10):1125–1130, 1999.
Chiarelli, P., A. Lanata, M. Carbone, and C. Domenici. High frequency poroelastic waves in hydrogels. J. Acoust. Soc. Am. 127(3):1197–1207, 2010.
de Boer, R., W. Ehlers, and Z. Liu. One-dimensional transient wave propagation in fluid saturated incompressible porous media. Arch. Appl. Mech. 63:59–72, 1993.
Eberhardt, A. W., L. M. Keer, J. L. Lewis, and V. Vithoontien. An analytical model of joint contact. J. Biomech. Eng. 112(4):407–413, 1990.
Fox, E. A. Mechanics. New York: Harper and Row, 1967.
Hattori, K., K. Ikeuchi, Y. Morita, and Y. Takakura. Quantitative ultrasonic assessment for detecting microscopic cartilage damage in osteoarthritis. Arthritis Res. Ther. 7(1):R38–R46, 2005.
Hattori, K., K. Mori, T. Habata, Y. Takakura, and K. Ikeuchi. Measurement of the mechanical condition of articular cartilage with an ultrasonic probe: quantitative evaluation using wavelet transformation. Clin. Biomech. 18(6):553–557, 2003.
Hattori, K., Y. Takakura, M. Ishimura, Y. Tanaka, T. Habata, and K. Ikeuchi. Differential acoustic properties of early cartilage lesions in living human knee and ankle joints. Arthritis Rheum. 52(10):3125–3131, 2005.
Hattori, K., Y. Takakura, H. Ohgushi, T. Habata, K. Uematsu, and K. Ikeuchi. Novel ultrasonic evaluation of tissue-engineered cartilage for large osteochondral defects—non-invasive judgment of tissue-engineered cartilage. J. Orthop. Res. 23(5):1179–1183, 2005.
Hattori, K., Y. Takakura, H. Ohgushi, T. Habata, K. Uematsu, J. Yamauchi, K. Yamashita, T. Fukuchi, M. Sato, and K. Ikeuchi. Quantitative ultrasound can assess the regeneration process of tissue-engineered cartilage using a complex between adherent bone marrow cells and a three-dimensional scaffold. Arthritis Res. Ther. 7(3):R552–R559, 2005.
Johnson, E. M., D. A. Berk, R. K. Jain, and W. M. Deen. Diffusion and partitioning of proteins in charged agarose gels. Biophys. J. 68(4):1561–1568, 1995.
Kaleva, E., S. Saarakkala, J. Töyräs, H. J. Nieminen, and J. S. Jurvelin. In vitro comparison of time-domain, frequency-domain and wavelet ultrasound parameters in diagnostics of cartilage degeneration. Ultrasound Med. Biol. 34(1):155–159, 2008.
Kelly, D. J., A. Crawford, S. C. Dickinson, T. J. Sims, J. Mundy, A. P. Hollander, P. J. Prendergast, and P. V. Hatton. Biochemical markers of the mechanical quality of engineered hyaline cartilage. J. Mater. Sci. Mater. Med. 18(2):273–281, 2007.
Kino-Oka, M., Y. Maeda, T. Yamamoto, K. Sugawara, and M. Taya. A kinetic modeling of chondrocyte culture for manufacture of tissue-engineered cartilage. J. Biosci. Bioeng. 99(3):197–207, 2005.
Korhonen, R. K., M. S. Laasanen, J. Töyräs, R. Lappalainen, H. J. Helminen, and J. S. Jurvelin. Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage. J. Biomech. 36(9):1373–1379, 2003.
Li, L. P., M. D. Buschmann, and A. Shirazi-Adl. A fibril reinforced nonhomogeneous poroelastic model for articular cartilage: inhomogeneous response in unconfined compression. J. Biomech. 33(12):1533–1541, 2000.
Lu, X. L., D. D. Sun, X. E. Guo, F. H. Chen, W. M. Lai, and V. C. Mow. Indentation determined mechanoelectrochemical properties and fixed charge density of articular cartilage. Ann. Biomed. Eng. 32(3):370–379, 2004.
Lyyra, T., J. Jurvelin, P. Pitkänen, U. Väätäinen, and I. Kiviranta. Indentation instrument for the measurement of cartilage stiffness under arthroscopic control. Med. Eng. Phys. 17(5):395–399, 1995.
Lyyra, T., I. Kiviranta, U. Väätäinen, H. J. Helminen, and J. S. Jurvelin. In vivo characterization of indentation stiffness of articular cartilage in the normal human knee. J. Biomed. Mater. Res. 48(4):482–487, 1999.
Lyyra-Laitinen, T., M. Niinimäki, J. Töyräs, R. Lindgren, I. Kiviranta, and J. S. Jurvelin. Optimization of the arthroscopic indentation instrument for the measurement of thin cartilage stiffness. Phys. Med. Biol. 44(10):2511–2524, 1999.
Ma, P. X., and R. Langer. Morphology and mechanical function of long-term in vitro engineered cartilage. J. Biomed. Mater. Res. 44(2):217–221, 1999.
Mak, A. F., W. M. Lai, and V. C. Mow. Biphasic indentation of articular cartilage—I. Theoretical analysis. J. Biomech. 20(7):703–714, 1987.
Mow, V. C., M. C. Gibbs, W. M. Lai, W. B. Zhu, and K. A. Athanasiou. Biphasic indentation of articular cartilage—II. A numerical algorithm and an experimental study. J. Biomech. 22(8–9):853–861, 1989.
Mow, V. C., S. C. Kuei, W. M. Lai, and C. G. Armstrong. Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J. Biomech. Eng. 102(1):73–84, 1980.
Ng, K. W., G. A. Ateshian, and C. T. Hung. Zonal chondrocytes seeded in a layered agarose hydrogel create engineered cartilage with depth-dependent cellular and mechanical inhomogeneity. Tissue Eng. Part A 15(9):2315–2324, 2009.
Nieminen, H. J., S. Saarakkala, M. S. Laasanen, J. Hirvonen, J. S. Jurvelin, and J. Töyräs. Ultrasound attenuation in normal and spontaneously degenerated articular cartilage. Ultrasound Med. Biol. 30(4):493–500, 2004.
Nieminen, H. J., J. Töyräs, M. S. Laasanen, and J. S. Jurvelin. Acoustic properties of articular cartilage under mechanical stress. Biorheology 43(3–4):523–535, 2006.
Oloyede, A., R. Flachsmann, and N. D. Broom. The dramatic influence of loading velocity on the compressive response of articular cartilage. Connect. Tissue Res. 27(4):211–224, 1992.
Pierce, A. D. Acoustics. New York: McGraw-Hill, 1981.
Roth, V., and V. C. Mow. The intrinsic tensile behavior of the matrix of bovine articular cartilage and its variation with age. J. Bone Joint Surg. Am. 62(7):1102–1117, 1980.
Sabersky, R. H., A. J. Acosta, E. G. Hauptmann, and E. M. Gates. Fluid Flow. Upper Saddle River: Prentice Hall, 1999.
Schulz, R. M., and A. Bader. Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur. Biophys. J. 36(4–5):539–568, 2007.
Setton, L. A., D. M. Elliott, and V. C. Mow. Altered mechanics of cartilage with osteoarthritis: human osteoarthritis and an experimental model of joint degeneration. Osteoarthr. Cartil. 7(1):2–14, 1999.
Silyn-Roberts, H., and N. D. Broom. Fracture behaviour of cartilage-on-bone in response to repeated impact loading. Connect. Tissue Res. 24(2):143–156, 1990.
Solchaga, L. A., K. Penick, V. M. Goldberg, A. I. Caplan, and J. F. Welter. Fibroblast growth factor-2 enhances proliferation and delays loss of chondrogenic potential in human adult bone-marrow-derived mesenchymal stem cells. Tissue Eng. Part A 16(3):1009–1019, 2010.
Solchaga, L. A., K. Penick, J. D. Porter, V. M. Goldberg, A. I. Caplan, and J. F. Welter. FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. J. Cell. Physiol. 203(2):398–409, 2005.
Töyräs, J., M. S. Laasanen, S. Saarakkala, M. J. Lammi, J. Rieppo, J. Kurkijärvi, R. Lappalainen, and J. S. Jurvelin. Speed of sound in normal and degenerated bovine articular cartilage. Ultrasound Med. Biol. 29(3):447–454, 2003.
Töyräs, J., J. Rieppo, M. T. Nieminen, H. J. Helminen, and J. S. Jurvelin. Characterization of enzymatically induced degradation of articular cartilage using high frequency ultrasound. Phys. Med. Biol. 44(11):2723–2733, 1999.
Vasara, A. I., J. S. Jurvelin, L. Peterson, and I. Kiviranta. Arthroscopic cartilage indentation and cartilage lesions of anterior cruciate ligament-deficient knees. Am. J. Sports Med. 33(3):408–414, 2005.
Wang, C. C., C. T. Hung, and V. C. Mow. An analysis of the effects of depth-dependent aggregate modulus on articular cartilage stress-relaxation behavior in compression. J. Biomech. 34(1):75–84, 2001.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4