Ailhaud, G., E. Amri, C. Cermolacce, P. Djian, C. Forest, D. Gaillard, P. Grimaldi, J. Khoo, R. Négrel, and G. Serrero-Davé. Hormonal requirements for growth and differentiation of ob17 preadipocyte cells in vitro. Diabetes Metab. 9(2):125–133, 1983.
Alber, M. S., M. A. Kiskowski, J. A. Glazier, and Y. Jiang. On cellular automaton approaches to modeling biological cells. In: Mathematical Systems Theory in Biology, Communication, and Finance, edited by J. Rosenthal, and D. S. Gilliam. New York: Springer, 2002, pp. 1–40.
Amri, E. Z., P. Grimaldi, R. Négrel, and G. Ailhaud. Adipose conversion of ob17 cells: insulin acts solely as a modulator in the expression of the differentiation program. Exp. Cell. Res. 152(2):368–377, 1984.
Brasaemle, D. L., D. M. Levin, D. C. Adler-Wailes, and C. Londos. The lipolytic stimulation of 3T3-L1 adipocytes promotes the translocation of hormone-sensitive lipase to the surfaces of lipid storage droplets. Biochim. Biophys. Acta 1483:251–262, 2000.
Bronk, B. V., G. J. Dienes, and A. Paskin. The stochastic theory of cell proliferation. Biophys. J. 8(11):1353–1398, 1968.
Chiu, Y. C., M. H. Cheng, S. Uriel, and E. M. Brey. Materials for engineering vascularized adipose tissue. J. Tissue Viabil. 20:37–48, 2011.
Conolly, R. B., and J. S. Kimbell. Computer simulation of cell growth governed by stochastic processes application to clonal growth cancer models. Toxicol. Appl. Pharmacol. 124:284–295, 1994.
Djian, P., P. Grimaldi, R. Négrel, and G. Ailhaud. Adipose conversion of Ob17 preadipocytes: relationships between cell division and fat cell cluster formation. Exp. Cell Res. 142(2):273–281, 1982.
Dominique, L. Adipose tissue lipolysis as a metabolic pathway to define pharmacological strategies against obesity and the metabolic syndrome. Pharmacol. Res. 53(6):482–491, 2006.
Forest, C., P. Grimaldi, D. Czerucka, R. Negrel, and G. Ailhaud. Establishment of a preadipocyte cell line from the epididymal fat pad of the lean C57 BL/6J mouse-long term effects of insulin and triiodothyronine on adipose conversion. In Vitro 19(4):344–354, 1983.
Geris, L., P. Van Liedekerke, B. Smeets, E. Tijskens, and H. Ramon. A cell based modelling framework for skeletal tissue engineering applications. J. Biomech. 43(5):887–892, 2010.
Green, H., and O. Kehinde. Sublines of mouse 3T3 cells that accumulate lipid. Cell 1(3):113–116, 1974.
Green, H., and O. Kehinde. An established pre-adipose cell line and its differentiation in culture II. Factors affecting the adipose conversion. Cell 5:19–25, 1975.
Green, H., and M. Meuth. An established pre-adipose cell line and its differentiation in culture. Cell 3:127–133, 1974.
Grimaldi, P., R. Negrel, J. P. Vincent, and G. Ailhaud. Differentiation of ob 17 preadipocytes to adipocytes. Effect of insulin on the levels of insulin receptors and on the transport of alpha-aminoisobutyrate. J. Biol. Chem. 254(15):6849–6852, 1979.
Gusella, J. Commitment to erythroid differentiation by friend erythroleukemia cells: a stochastic analysis. Cell 9:221–229, 1976.
Jagers, P. Stochastic models for cell kinetics. Bull. Math. Biol. 45(4):507–519, 1983.
MATLAB™. Matlab User’s Manual. Natrick, MA: The Mathworks, Inc., 2009.
Négrel, R., P. Grimaldi, and G. Ailhaud. Establishment of preadipocyte clonal line from epididymal fat pad of ob/ob mouse that responds to insulin and to lipolytic hormones. PNAS 75(12):6054–6058, 1978.
Or-Tzadikario, S., A. Gefen, et al. Confocal-based cell-specific finite element modeling extended to study variable cell shapes and intracellular structures: the example of the adipocyte. J. Biomech. 44:567–573, 2010.
Or-Tzadikario, S., R. Sopher, and A. Gefen. Quantitative monitoring of lipid accumulation over time in cultured adipocytes as function of culture conditions: toward controlled adipose tissue engineering. Tissue Eng. C 16(5):1167–1181, 2010.
Otto, T. C., and M. D. Lane. Adipose development: from stem cell to adipocyte. Crit. Rev. Biochem. Mol. Biol. 40:229–242, 2005.
Pharr, P. N., J. Nedelman, H. P. Downs, M. Ogawa, and A. J. Gross. A stochastic model for mast cell proliferation in culture. J. Cell. Physiol. 125(3):379–386, 1985.
Roeder, I., L. M. Kamminga, K. Braesel, B. Dontje, G. De Haan, and M. Loeffler. Competitive clonal hematopoiesis in mouse chimeras explained by a stochastic model of stem cell organization. Blood 105:609–616, 2005.
Shields, R., R. F. Brooks, P. N. Riddle, D. F. Capellaro, and D. Della. Cell size, cell cycle and transition probability in mouse fibroblast. Cell 15:469–474, 1978.
Shields, R., and A. Smith. Cell regulate their proliferation through alteration in transition probability. J. Cell. Physiol. 91:345–355, 1977.
Smith, J. A., and L. Martin. Do cell cycle? Proc. Natl. Acad. Sci. USA 70(4):1263–1267, 1973.
Song, H., K. C. O’connor, K. D. Papadopoulos, and D. A. Jansen. Differentiation kinetics of in vitro 3T3-L1 preadipocyte cultures. Tissue Eng. 8:1071–1081, 2002.
Steinberg, M. M., and B. L. Brownstein. Differentiation of cultured pre-adipose cells: a probability model. J. Cell Physiol. Suppl. 2:37–50, 1982.
Steppan, C. M., T. B. Shannon, B. Savitha, J. B. Elizabeth, R. B. Ronadip, M. W. Christopher, R. P. Hiralben, S. A. Rexford, and A. L. Mitchell. The hormone resistin links obesity to diabetes. Nature 409:307–312, 2000.
Vannier, C., D. Gaillard, P. Grimaldi, E. Z. Amri, P. Djian, C. Cermolacce, C. Forest, J. Etienne, R. Negrel, and G. Ailhaud. Adipose conversion of ob17 cells and hormone-related events. Int. J. Obes. 9(1):41–53, 1985.
Vogel, H., H. Niewisch, and G. Matioli. Stochastic development of stem cells. J. Theor. Biol. 22:249–270, 1969.
Yakovlev, A. Y., M. Mayer-Proschel, and M. A. Noble. A stochastic model of brain cell differentiation in tissue culture. J. Math. Biol. 37:49–60, 1998.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4