A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-011-0317-2 below:

Adaptive Surrogate Modeling for Expedited Estimation of Nonlinear Tissue Properties Through Inverse Finite Element Analysis

References
  1. Atkeson, C. G., A. W. Moore, and S. Schaal. Locally weighted learning. Artif. Intell. Rev. 11:11–73, 1997.

    Article  Google Scholar 

  2. Birattari, M., G. Bontempi, and H. Bersini. Lazy learning meets the recursive least squares algorithm. In: Advances in Neural Information Processing Systems, Vol. 11, edited by M. S. Kearns, S. A. Solla, and D. A. Cohn. Cambridge, MA: MIT Press, 1999, pp. 375–381.

    Google Scholar 

  3. Brown, T. D., H. J. Lundberg, D. R. Pedersen, and J. J. Callaghan. 2009 Nicolas Andry Award: clinical biomechanics of third body acceleration of total hip wear. Clin. Orthop. Relat. Res. 467:1885–1897, 2009.

    Article  PubMed  Google Scholar 

  4. Cevidanes, L. H. C., S. Tucker, M. Styner, H. Kim, J. Chapuis, M. Reyes, W. Proffit, T. Turvey, and M. Jaskolka. Three-dimensional surgical simulation. Am. J. Orthod. Dentofac. Orthop. 138:361–371, 2010.

    Article  Google Scholar 

  5. Chen, K., B. Fata, and D. R. Einstein. Characterization of the highly nonlinear and anisotropic vascular tissues from experimental inflation data: a validation study toward the use of clinical data for in-vivo modeling and analysis. Ann. Biomed. Eng. 36:1668–1680, 2008.

    Article  PubMed  Google Scholar 

  6. Einstein, D. R., A. D. Freed, N. Stander, B. Fata, and I. Vesely. Inverse parameter fitting of biological tissues: a response surface approach. Ann. Biomed. Eng. 33:1819–1830, 2005.

    Article  PubMed  Google Scholar 

  7. Erdemir, A., P. A. Sirimamilla, J. P. Halloran, and A. J. van den Bogert. An elaborate data set characterizing the mechanical response of the foot. J. Biomech. Eng. 131:094502, 2009.

    Article  PubMed  Google Scholar 

  8. Erdemir, A., M. L. Viveiros, J. S. Ulbrecht, and P. R. Cavanagh. An inverse finite-element model of heel-pad indentation. J. Biomech. 39:1279–1286, 2006.

    Article  PubMed  Google Scholar 

  9. Fagan, M. J., S. Julian, and A. M. Mohsen. Finite element analysis in spine research. Proc. Inst. Mech. Eng. H 216:281–298, 2002.

    PubMed  CAS  Google Scholar 

  10. Famaey, N., and J. Vander Sloten. Soft tissue modelling for applications in virtual surgery and surgical robotics. Comput. Methods Biomech. Biomed. Eng. 11:351–366, 2008.

    Article  Google Scholar 

  11. Gilbertson, L. G., V. K. Goel, W. Z. Kong, and J. D. Clausen. Finite element methods in spine biomechanics research. Crit. Rev. Biomed. Eng. 23:411–473, 1995.

    PubMed  CAS  Google Scholar 

  12. Goffe, W. L., G. D. Ferrier, and J. Rogers. Global optimization of statistical functions with simulated annealing. J. Econom. 60:65–99, 1994.

    Article  Google Scholar 

  13. Halloran, J. P., S. K. Easley, A. J. Petrella, and P. J. Rullkoetter. Comparison of deformable and elastic foundation finite element simulations for predicting knee replacement mechanics. J. Biomech. Eng. 127:813–818, 2005.

    Article  PubMed  Google Scholar 

  14. Halloran, J. P., A. Erdemir, and A. J. van den Bogert. Adaptive surrogate modeling for efficient coupling of musculoskeletal control and tissue deformation models. J. Biomech. Eng. 131:011014, 2009.

    Article  PubMed  Google Scholar 

  15. Halloran, J. P., J. D. Frampton, and A. Erdemir. Adaptive surrogate modeling for cost-effective determination of nonlinear tissue properties. In: The Annual Meeting for the American Society of Biomechanics, State College, PA, 2009. See http://asbweb.org/conferences/2009/pdf/945.pdf (accessed March 2, 2011).

  16. Huiskes, R., and S. J. Hollister. From structure to process, from organ to cell: recent developments of FE-analysis in orthopaedic biomechanics. J. Biomech. Eng. 115:520–527, 1993.

    Article  PubMed  CAS  Google Scholar 

  17. Jordan, P., S. Socrate, T. E. Zickler, and R. D. Howe. Constitutive modeling of porcine liver in indentation using 3D ultrasound imaging. J. Mech. Behav. Biomed. Mater. 2:192–201, 2009.

    Article  PubMed  CAS  Google Scholar 

  18. Kennedy, J., and R. Eberhart. Particle swarm optimization. In: Proceedings IEEE International Conference on Neural Networks, Perth, WA, Australia, 1995, Vol. 4, pp. 1942–1948.

  19. Langenderfer, J. E., P. J. Laz, A. J. Petrella, and P. J. Rullkoetter. An efficient probabilistic methodology for incorporating uncertainty in body segment parameters and anatomical landmarks in joint loadings estimated from inverse dynamics. J. Biomech. Eng. 130:014502, 2008.

    Article  PubMed  Google Scholar 

  20. Laz, P. J., S. Pal, J. P. Halloran, A. J. Petrella, and P. J. Rullkoetter. Probabilistic finite element prediction of knee wear simulator mechanics. J. Biomech. 39:2303–2310, 2006.

    Article  PubMed  Google Scholar 

  21. Lei, F., and A. Z. Szeri. Inverse analysis of constitutive models: biological soft tissues. J. Biomech. 40:936–940, 2007.

    Article  PubMed  Google Scholar 

  22. Lin, Y., R. T. Haftka, N. V. Queipo, and B. J. Fregly. Two-dimensional surrogate contact modeling for computationally efficient dynamic simulation of total knee replacements. J. Biomech. Eng. 131:041010, 2009.

    Article  PubMed  Google Scholar 

  23. Malone, H. R., O. N. Syed, M. S. Downes, A. L. D’Ambrosio, D. O. Quest, and M. G. Kaiser. Simulation in neurosurgery: a review of computer-based simulation environments and their surgical applications. Neurosurgery 67:1105–1116, 2010.

    Article  PubMed  Google Scholar 

  24. Misra, S., K. T. Ramesh, and A. M. Okamura. Modeling of tool-tissue interactions for computer-based surgical simulation: a literature review. Presence (Camb.) 17:463, 2008.

    Google Scholar 

  25. Ogden, R. W. Non-Linear Elastic Deformations. New York: Courier Dover Publications, 1997.

    Google Scholar 

  26. Schittkowski, K. NLPQL: a FORTRAN subroutine solving constrained nonlinear programming problems. Ann. Oper. Res. 5:485–500, 1986.

    Google Scholar 

  27. Schwartz, J., M. Denninger, D. Rancourt, C. Moisan, and D. Laurendeau. Modelling liver tissue properties using a non-linear visco-elastic model for surgery simulation. Med. Image Anal. 9:103–112, 2005.

    Article  PubMed  Google Scholar 

  28. Snyman, J. A. The LFOPC leap-frog algorithm for constrained optimization. Comput. Math. Appl. 40:1085–1096, 2000.

    Article  Google Scholar 

  29. Vadakkumpadan, F., H. Arevalo, A. J. Prassl, J. Chen, F. Kickinger, P. Kohl, G. Plank, and N. Trayanova. Image-based models of cardiac structure in health and disease. Wiley Interdiscip. Rev. Syst. Biol. Med. 2:489–506, 2010.

    Article  PubMed  Google Scholar 

  30. Zaw, K., G. R. Liu, B. Deng, and K. B. C. Tan. Rapid identification of elastic modulus of the interface tissue on dental implants surfaces using reduced-basis method and a neural network. J. Biomech. 42:634–641, 2009.

    Article  PubMed  Google Scholar 

  31. Zhong, H., and T. Peters. A real time hyperelastic tissue model. Comput. Methods Biomech. Biomed. Eng. 10:185–193, 2007.

    Article  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4