Atkeson, C. G., A. W. Moore, and S. Schaal. Locally weighted learning. Artif. Intell. Rev. 11:11–73, 1997.
Birattari, M., G. Bontempi, and H. Bersini. Lazy learning meets the recursive least squares algorithm. In: Advances in Neural Information Processing Systems, Vol. 11, edited by M. S. Kearns, S. A. Solla, and D. A. Cohn. Cambridge, MA: MIT Press, 1999, pp. 375–381.
Brown, T. D., H. J. Lundberg, D. R. Pedersen, and J. J. Callaghan. 2009 Nicolas Andry Award: clinical biomechanics of third body acceleration of total hip wear. Clin. Orthop. Relat. Res. 467:1885–1897, 2009.
Cevidanes, L. H. C., S. Tucker, M. Styner, H. Kim, J. Chapuis, M. Reyes, W. Proffit, T. Turvey, and M. Jaskolka. Three-dimensional surgical simulation. Am. J. Orthod. Dentofac. Orthop. 138:361–371, 2010.
Chen, K., B. Fata, and D. R. Einstein. Characterization of the highly nonlinear and anisotropic vascular tissues from experimental inflation data: a validation study toward the use of clinical data for in-vivo modeling and analysis. Ann. Biomed. Eng. 36:1668–1680, 2008.
Einstein, D. R., A. D. Freed, N. Stander, B. Fata, and I. Vesely. Inverse parameter fitting of biological tissues: a response surface approach. Ann. Biomed. Eng. 33:1819–1830, 2005.
Erdemir, A., P. A. Sirimamilla, J. P. Halloran, and A. J. van den Bogert. An elaborate data set characterizing the mechanical response of the foot. J. Biomech. Eng. 131:094502, 2009.
Erdemir, A., M. L. Viveiros, J. S. Ulbrecht, and P. R. Cavanagh. An inverse finite-element model of heel-pad indentation. J. Biomech. 39:1279–1286, 2006.
Fagan, M. J., S. Julian, and A. M. Mohsen. Finite element analysis in spine research. Proc. Inst. Mech. Eng. H 216:281–298, 2002.
Famaey, N., and J. Vander Sloten. Soft tissue modelling for applications in virtual surgery and surgical robotics. Comput. Methods Biomech. Biomed. Eng. 11:351–366, 2008.
Gilbertson, L. G., V. K. Goel, W. Z. Kong, and J. D. Clausen. Finite element methods in spine biomechanics research. Crit. Rev. Biomed. Eng. 23:411–473, 1995.
Goffe, W. L., G. D. Ferrier, and J. Rogers. Global optimization of statistical functions with simulated annealing. J. Econom. 60:65–99, 1994.
Halloran, J. P., S. K. Easley, A. J. Petrella, and P. J. Rullkoetter. Comparison of deformable and elastic foundation finite element simulations for predicting knee replacement mechanics. J. Biomech. Eng. 127:813–818, 2005.
Halloran, J. P., A. Erdemir, and A. J. van den Bogert. Adaptive surrogate modeling for efficient coupling of musculoskeletal control and tissue deformation models. J. Biomech. Eng. 131:011014, 2009.
Halloran, J. P., J. D. Frampton, and A. Erdemir. Adaptive surrogate modeling for cost-effective determination of nonlinear tissue properties. In: The Annual Meeting for the American Society of Biomechanics, State College, PA, 2009. See http://asbweb.org/conferences/2009/pdf/945.pdf (accessed March 2, 2011).
Huiskes, R., and S. J. Hollister. From structure to process, from organ to cell: recent developments of FE-analysis in orthopaedic biomechanics. J. Biomech. Eng. 115:520–527, 1993.
Jordan, P., S. Socrate, T. E. Zickler, and R. D. Howe. Constitutive modeling of porcine liver in indentation using 3D ultrasound imaging. J. Mech. Behav. Biomed. Mater. 2:192–201, 2009.
Kennedy, J., and R. Eberhart. Particle swarm optimization. In: Proceedings IEEE International Conference on Neural Networks, Perth, WA, Australia, 1995, Vol. 4, pp. 1942–1948.
Langenderfer, J. E., P. J. Laz, A. J. Petrella, and P. J. Rullkoetter. An efficient probabilistic methodology for incorporating uncertainty in body segment parameters and anatomical landmarks in joint loadings estimated from inverse dynamics. J. Biomech. Eng. 130:014502, 2008.
Laz, P. J., S. Pal, J. P. Halloran, A. J. Petrella, and P. J. Rullkoetter. Probabilistic finite element prediction of knee wear simulator mechanics. J. Biomech. 39:2303–2310, 2006.
Lei, F., and A. Z. Szeri. Inverse analysis of constitutive models: biological soft tissues. J. Biomech. 40:936–940, 2007.
Lin, Y., R. T. Haftka, N. V. Queipo, and B. J. Fregly. Two-dimensional surrogate contact modeling for computationally efficient dynamic simulation of total knee replacements. J. Biomech. Eng. 131:041010, 2009.
Malone, H. R., O. N. Syed, M. S. Downes, A. L. D’Ambrosio, D. O. Quest, and M. G. Kaiser. Simulation in neurosurgery: a review of computer-based simulation environments and their surgical applications. Neurosurgery 67:1105–1116, 2010.
Misra, S., K. T. Ramesh, and A. M. Okamura. Modeling of tool-tissue interactions for computer-based surgical simulation: a literature review. Presence (Camb.) 17:463, 2008.
Ogden, R. W. Non-Linear Elastic Deformations. New York: Courier Dover Publications, 1997.
Schittkowski, K. NLPQL: a FORTRAN subroutine solving constrained nonlinear programming problems. Ann. Oper. Res. 5:485–500, 1986.
Schwartz, J., M. Denninger, D. Rancourt, C. Moisan, and D. Laurendeau. Modelling liver tissue properties using a non-linear visco-elastic model for surgery simulation. Med. Image Anal. 9:103–112, 2005.
Snyman, J. A. The LFOPC leap-frog algorithm for constrained optimization. Comput. Math. Appl. 40:1085–1096, 2000.
Vadakkumpadan, F., H. Arevalo, A. J. Prassl, J. Chen, F. Kickinger, P. Kohl, G. Plank, and N. Trayanova. Image-based models of cardiac structure in health and disease. Wiley Interdiscip. Rev. Syst. Biol. Med. 2:489–506, 2010.
Zaw, K., G. R. Liu, B. Deng, and K. B. C. Tan. Rapid identification of elastic modulus of the interface tissue on dental implants surfaces using reduced-basis method and a neural network. J. Biomech. 42:634–641, 2009.
Zhong, H., and T. Peters. A real time hyperelastic tissue model. Comput. Methods Biomech. Biomed. Eng. 10:185–193, 2007.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4