A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-010-9981-x below:

Binary Segmentation Masks Can Improve Intrasubject Registration Accuracy of Bone Structures in CT Images

Abstract

Registration of bone structures is a common problem in medical research as well as in clinical applications. Intrasubject rigid 3D monomodality registration of segmented bone structures of CT images and multimodality registration of μMR and segmented μCT bone images were performed with the multiresolution intensity-based technique implemented in ITK. The registration results for binary volumes of interest (VOI) masks and for segmented gray value VOIs were compared. To determine the registration quality, in the monomodality case the sum of squared difference, the sum of absolute differences, and the normalized symmetric difference of binary masks and in the multimodality case Mattes mutual information were applied. The use of binary VOI masks was significantly superior to the use of gray value VOIs.

This is a preview of subscription content, log in via an institution to check access.

Access this article Subscribe and save

Springer+ Basic

€34.99 /Month

Subscribe now Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others Explore related subjectsDiscover the latest articles and news from researchers in related subjects, suggested using machine learning. References
  1. Batiste, D. L., et al. High-resolution MRI and micro-CT in an ex vivo rabbit anterior cruciate ligament transection model of osteoarthritis. Osteoarthr. Cartil. 12(8):614–626, 2004.

    Article  PubMed  Google Scholar 

  2. Blumenfeld, J., et al. Automatic prospective registration of high-resolution trabecular bone images of the tibia. Ann. Biomed. Eng. 35(11):1924–1931, 2007.

    Article  PubMed  Google Scholar 

  3. Boyd, S. K., et al. Evaluation of three-dimensional image registration methodologies for in vivo micro-computed tomography. Ann. Biomed. Eng. 34(10):1587–1599, 2006.

    Article  PubMed  Google Scholar 

  4. de Bruin, D. M., et al. In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm. Invest. Ophthalmol. Vis. Sci. 49(10):4545–4552, 2008.

    Article  PubMed  Google Scholar 

  5. Dekker, N., L. S. Ploeger, and M. van Herk. Evaluation of cost functions for gray value matching of two-dimensional images in radiotherapy. Med. Phys. 30(5):778–784, 2003.

    Article  PubMed  Google Scholar 

  6. Droske, M., and M. Rumpf. Multiscale joint segmentation and registration of image morphology. IEEE Trans. Pattern. Anal. Mach. Intell. 29(12):2181–2194, 2007.

    Article  PubMed  Google Scholar 

  7. Engelke, K., et al. Reanalysis precision of 3D quantitative computed tomography (QCT) of the spine. Bone 44(4):566–572, 2009.

    Article  PubMed  Google Scholar 

  8. Greenspan, M., L. I. Wang, and R. Ellis. Validation and improved registration of bone segmentation using contour coherency. Conf Proc. IEEE Eng. Med. Biol. Soc. 1:244–247, 2006.

    Article  PubMed  Google Scholar 

  9. Hajnal, J. V., D. L. Hill, and D. J. Hawkes (eds.). Medical image analysis. In: Biomedical Engineering, edited by M. Neuman. CRC Press Inc., 2001, 392 p.

  10. Hardisty, M., et al. Quantitative characterization of metastatic disease in the spine. Part I. Semiautomated segmentation using atlas-based deformable registration and the level set method. Med. Phys. 34(8):3127–3134, 2007.

    Article  CAS  PubMed  Google Scholar 

  11. Ibanez, L., et al. The ITK Software Guide. Clifton Park, NY: Kitware Inc., 787 pp., 2005. http://www.itk.org/ItkSoftwareGuide.pdf.

  12. Kang, Y., K. Engelke, and W. A. Kalender. A new accurate and precise 3-D segmentation method for skeletal structures in volumetric CT data. IEEE Trans. Med Imaging 22(5):586–598, 2003.

    Article  PubMed  Google Scholar 

  13. Li, W., et al. Automated registration of hip and spine for longitudinal QCT studies: integration with 3D densitometric and structural analysis. Bone 38(2):273–279, 2006.

    Article  PubMed  Google Scholar 

  14. Macneil, J. A. and S. K. Boyd. Improved reproducibility of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med. Eng. Phys. 2007.

  15. Mahfouz, M. R., et al. Effect of segmentation errors on 3D-to-2D registration of implant models in X-ray images. J. Biomech. 38(2):229–239, 2005.

    Article  PubMed  Google Scholar 

  16. Mastmeyer, A., et al. A hierarchical 3D segmentation method and the definition of vertebral body coordinate systems for QCT of the lumbar spine. Med. Image Anal. 10(4):560–577, 2006.

    Article  PubMed  Google Scholar 

  17. Nikou, C., F. Heitz, and J.-P. Armspach. Robust voxel similarity metrics for the registration of dissimilar single and multimodal images. Pattern Recogn. 32:18, 1999.

    Article  Google Scholar 

  18. Penney, G. P., et al. A comparison of similarity measures for use in 2-D–3-D medical image registration. IEEE Trans. Med. Imaging 17(4):586–595, 1998.

    Article  CAS  PubMed  Google Scholar 

  19. Rajapakse, C. S., J. F. Magland, and F. W. Wehrli. Fast prospective registration of in vivo MR images of trabecular bone microstructure in longitudinal studies. Magn. Reson. Med. 59(5):1120–1126, 2008.

    Article  PubMed  Google Scholar 

  20. Stammberger, T., et al. Elastic registration of 3D cartilage surfaces from MR image data for detecting local changes in cartilage thickness. Magn. Reson. Med. 44(4):592–601, 2000.

    Article  CAS  PubMed  Google Scholar 

  21. Waarsing, J. H., et al. Detecting and tracking local changes in the tibiae of individual rats: a novel method to analyse longitudinal in vivo micro-CT data. Bone 34(1):163–169, 2004.

    Article  CAS  PubMed  Google Scholar 

  22. Yezzi, A., L. Zollei, and T. Kapur. A variational framework for integrating segmentation and registration through active contours. Med. Image Anal. 7(2):171–185, 2003.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge support by the Interdisciplinary Center of Clinical Research (IZKF) of the University of Erlangen (Core Unit Z2), and the German Research Foundation DFG (Forschergruppe 661, TP7). Parts of the study have been presented at Bildverarbeitung für die Medizin (BVM) 2009, Heidelberg, Germany.

Author information Authors and Affiliations
  1. Institute for Medical Physics, University of Erlangen-Nuremberg, Henkestr. 91, 91052, Erlangen, Germany

    Oleg Museyko, Fabian Eisa, Willi A. Kalender & Klaus Engelke

  2. Institute for Pharmacology and Toxicology, University of Erlangen-Nuremberg, Erlangen, Germany

    Andreas Hess

  3. Department of Internal Medicine 3, University of Erlangen-Nuremberg, Erlangen, Germany

    Georg Schett

Authors
  1. Oleg Museyko
  2. Fabian Eisa
  3. Andreas Hess
  4. Georg Schett
  5. Willi A. Kalender
  6. Klaus Engelke
Corresponding author

Correspondence to Oleg Museyko.

Additional information

Associate Editor Sean S. Kohles oversaw the review of this article.

About this article Cite this article

Museyko, O., Eisa, F., Hess, A. et al. Binary Segmentation Masks Can Improve Intrasubject Registration Accuracy of Bone Structures in CT Images. Ann Biomed Eng 38, 2464–2472 (2010). https://doi.org/10.1007/s10439-010-9981-x

Download citation

Keywords

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4