Akiyama, S., E. Hasegawa, T. Hasegawa, and K. Yamada. The interaction of fibronectin fragments with fibroblastic cells. J. Biol. Chem. 260(24):13256–13260, 1985.
Akiyama, S., and K. Yamada. The interaction of plasma fibronectin with fibroblastic cells in suspension. J. Biol. Chem. 260(7):4492–4500, 1985.
Beekman, B., J. W. Drijfhout, W. Bloemhoff, H. K. Ronday, P. P. Tak, and J. M. T. Koppele. Convenient fluorometric assay for matrix metalloproteinase activity and its application in biological media. FEBS Lett. 390(2):221–225, 1996.
Berry, H., and V. Larreta-Garde. Oscillatory behavior of a simple kinetic model for proteolysis during cell invasion. Biophys. J. 77(2):655–665, 1999.
Brown, A. Neutrophil granulocytes: adhesion and locomotion on collagen substrata and in collagen matrices. J. Cell Sci. 58(1):455–467, 1982.
Charvat, S., C. Le Griel, M. C. Chignol, D. Schmitt, and M. Serres. Ras-transfection up-regulated HaCaT cell migration: inhibition by Marimastat. Clin. Exp. Metastasis 17(8):677–685, 1999.
Christiansen, J. J., and A. K. Rajasekaran. Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res. 66(17):8319–8326, 2006.
Cox, E. A., S. K. Sastry, and A. Huttenlocher. Integrin-mediated adhesion regulates cell polarity and membrane protrusion through the rho family of GTPases. Mol. Biol. Cell 12(2):265–277, 2001.
Cukierman, E., R. Pankov, D. R. Stevens, and K. M. Yamada. Taking cell-matrix adhesions to the third dimension. Science 294(5547):1708–1712, 2001.
Deryugina, E. I., B. I. Ratnikov, T. I. Postnova, D. V. Rozanov, and A. Y. Strongin. Processing of integrin alpha(v) subunit by membrane type 1 matrix metalloproteinase stimulates migration of breast carcinoma cells on vitronectin and enhances tyrosine phosphorylation of focal adhesion kinase. J. Biol. Chem. 277(12):9749–9756, 2002.
Doyle, A. D., F. W. Wang, K. Matsumoto, and K. M. Yamada. One-dimensional topography underlies three-dimensional fibrillar cell migration. J. Cell Biol. 184(4):481–490, 2009.
Fisher, K. E., A. Pop, W. Koh, N. J. Anthis, W. B. Saunders, and G. E. Davis. Tumor cell invasion of collagen matrices requires coordinate lipid agonist-induced G-protein and membrane-type matrix metalloproteinase-1-dependent signaling. Mol. Cancer 5:69, 2006.
Friedl, P., and K. Wolf. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3(5):362–374, 2003.
Goodman, S. L., G. Risse, and K. von der Mark. The E8 subfragment of laminin promotes locomotion of myoblasts over extracellular matrix. J. Cell Biol. 109(2):799–809, 1989.
Hanahan, D., and R. A. Weinberg. The hallmarks of cancer. Cell 100(1):57–70, 2000.
Hanemaaijer, R., H. Visser, Y. Konttinen, P. Koolwijk, and J. H. Verheijen. A novel and simple immunocapture assay for determination of gelatinase-b (MMP-9) activities in biological fluids: saliva from patients with Sjögren’s Syndrome contain increased latent and active gelatinase-b levels. Matrix Biol. 17(8–9):657–665, 1998.
Hazgui, S., N. Bonnet, J. Cutrona, B. Nawrocki-Raby, M. Polette, L. Chouchane, P. Birembaut, and J. Zahm. 3D culture model and computer-assisted videomicroscopy to analyze migratory behavior of noninvasive and invasive bronchial epithelial cells. Am. J. Physiol. Cell Physiol. 289(6):C1547–C1552, 2005.
Hersel, U., C. Dahmen, and H. Kessler. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24(24):4385–4415, 2003.
Homandberg, G. A., F. Hui, C. Wen, C. Purple, K. Bewsey, H. Koepp, K. Huch, and A. Harris. Fibronectin-fragment-induced cartilage chondrolysis is associated with release of catabolic cytokines. Biochem. J. 321(Pt 3):751–757, 1997.
Hood, J. D., and D. A. Cheresh. Role of integrins in cell invasion and migration. Nat. Rev. Cancer 2(2):91–100, 2002.
Ivaska, J., and J. Heino. Adhesion receptors and cell invasion: mechanisms of integrin-guided degradation of extracellular matrix. Cell. Mol. Life Sci. 57(1):16–24, 2000.
Karagiannis, E. D., and A. S. Popel. A theoretical model of type I collagen proteolysis by matrix metalloproteinase (MMP) 2 and membrane type 1 MMP in the presence of tissue inhibitor of metalloproteinase 2. J. Biol. Chem. 279(37):39105–39114, 2004.
Karagiannis, E., and A. Popel. Distinct modes of collagen type I proteolysis by matrix metalloproteinase (MMP) 2 and membrane type I MMP during the migration of a tip endothelial cell: Insights from a computational model. J. Theor. Biol. 238(1):124–145, 2006.
Kerkvliet, E. H. M., A. J. P. Docherty, W. Beertsen, and V. Everts. Collagen breakdown in soft connective tissue explants is associated with the level of active gelatinase A (MMP-2) but not with collagenase. Matrix Biol. 18(4):373–380, 1999.
Kim, H., T. W. Guo, A. P. Wu, A. Wells, F. B. Gertler, and D. A. Lauffenburger. Epidermal growth factor-induced enhancement of glioblastoma cell migration in 3D arises from an intrinsic increase in speed but an extrinsic matrix- and proteolysis-dependent increase in persistence. Mol. Biol. Cell 19(10):4249–4259, 2008.
Kleiner, D. E., and W. G. Stetler-Stevenson. Quantitative zymography: detection of picogram quantities of gelatinases. Anal. Biochem. 218(2):325–329, 1994.
Koo, L. Y., D. J. Irvine, A. M. Mayes, D. A. Lauffenburger, and L. G. Griffith. Co-regulation of cell adhesion by nanoscale RGD organization and mechanical stimulus. J. Cell Sci. 115(Pt 7):1423–1433, 2002.
Lauffenburger, D. A., and A. F. Horwitz. Cell migration: a physically integrated molecular process. Cell 84(3):359–369, 1996.
Lutolf, M. P., J. L. Lauer-Fields, H. G. Schmoekel, A. T. Metters, F. E. Weber, G. B. Fields, and J. A. Hubbell. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc. Natl Acad. Sci. USA 100(9):5413–5418, 2003.
Maaser, K., K. Wolf, C. E. Klein, B. Niggemann, K. S. Zänker, E. Bröcker, and P. Friedl. Functional hierarchy of simultaneously expressed adhesion receptors: integrin α2β1 but not CD44 mediates MV3 melanoma cell migration and matrix reorganization within three-dimensional hyaluronan-containing collagen matrices. Mol. Biol. Cell 10(10):3067–3079, 1999.
Maheshwari, G., A. Wells, L. G. Griffith, and D. A. Lauffenburger. Biophysical integration of effects of epidermal growth factor and fibronectin on fibroblast migration. Biophys. J. 76(5):2814–2823, 1999.
McCawley, L. J., and L. M. Matrisian. Matrix metalloproteinases: they’re not just for matrix anymore! Curr. Opin. Cell Biol. 13(5):534–540, 2001.
Mori, H., N. Gjorevski, J. L. Inman, M. J. Bissell, and C. M. Nelson. Self-organization of engineered epithelial tubules by differential cellular motility. Proc. Natl Acad. Sci. USA 106(35):14890–14895, 2009.
Nabeshima, K., T. Inoue, Y. Shimao, Y. Okada, Y. Itoh, M. Seiki, and M. Koono. Front-cell-specific expression of membrane-type 1 matrix metalloproteinase and gelatinase A during cohort migration of colon carcinoma cells induced by hepatocyte growth factor/scatter factor. Cancer Res. 60(13):3364–3369, 2000.
Palecek, S. P., J. C. Loftus, M. H. Ginsberg, D. A. Lauffenburger, and A. F. Horwitz. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385(6616):537–540, 1997.
Pelham, R. J., and Y. Wang. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94(25):13661–13665, 1997.
Raeber, G. P., M. P. Lutolf, and J. A. Hubbell. Molecularly engineered PEG hydrogels: a novel model system for proteolytically mediated cell migration. Biophys. J. 89(2):1374–1388, 2005.
Raeber, G., M. Lutolf, and J. Hubbell. Mechanisms of 3-D migration and matrix remodeling of fibroblasts within artificial ECMs. Acta Biomater. 3(5):615–629, 2007.
Ratnikov, B., E. Deryugina, J. Leng, G. Marchenko, D. Dembrow, and A. Strongin. Determination of matrix metalloproteinase activity using biotinylated gelatin. Anal. Biochem. 286(1):149–155, 2000.
Roeder, B. A., K. Kokini, J. E. Sturgis, J. P. Robinson, and S. L. Voytik-Harbin. Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J. Biomech. Eng. 124(2):214–222, 2002.
Sabeh, F., R. Shimizu-Hirota, and S. J. Weiss. Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J. Cell Biol. 185(1):11–19, 2009.
Saito, S., M. Katoh, M. Masumoto, S. Matsumoto, and Y. Masuho. Involvement of MMP-1 and MMP-3 in collagen degradation induced by IL-1 in rabbit cartilage explant culture. Life Sci. 62(22):PL359–PL365, 1998.
Schmidt, C., A. Horwitz, D. Lauffenburger, and M. Sheetz. Integrin-cytoskeletal interactions in migrating fibroblasts are dynamic, asymmetric, and regulated. J. Cell Biol. 123(4):977–991, 1993.
Schwartz, M. P., B. D. Fairbanks, R. E. Rogers, R. Rangarajan, M. H. Zaman, and K. S. Anseth. A synthetic strategy for mimicking the extracellular matrix provides new insight about tumor cell migration. Integr. Biol. 2:32–40, 2010.
Steffensen, B., L. Hakkinen, and H. Larjava. Proteolytic events of wound-healing- coordinated interactions among matrix metalloproteinases (MMPs), integrins, and extracellular matrix molecules. Crit. Rev. Oral Biol. Med. 12(5):373–398, 2001.
St-Pierre, Y., M. Desrosiers, P. Tremblay, P. Esteve, and G. Opdenakker. Flow cytometric analysis of gelatinase B (MMP-9) activity using immobilized fluorescent substrate on microspheres. Cytometry 25(4):374–380, 1996.
Thiery, J. P. Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2(6):442–454, 2002.
Trinkaus, J. P. Cells into Organs: The Forces that Shape the Embryo, 2nd edn. Prentice Hall College Div, 1984.
Vempati, P., E. D. Karagiannis, and A. S. Popel. A biochemical model of matrix metalloproteinase 9 activation and inhibition. J. Biol. Chem. 282(52):37585–37596, 2007.
Verheijen, J. H., N. M. Nieuwenbroek, B. Beekman, R. Hanemaaijer, H. W. Verspaget, H. K. Ronday, and A. H. Bakker. Modified proenzymes as artificial substrates for proteolytic enzymes: colorimetric assay of bacterial collagenase and matrix metalloproteinase activity using modified pro-urokinase. Biochem. J. 323(Pt 3):603–609, 1997.
Yebra, M., G. C. Parry, S. Strömblad, N. Mackman, S. Rosenberg, B. M. Mueller, and D. A. Cheresh. Requirement of receptor-bound urokinase-type plasminogen activator for integrin alphavbeta5-directed cell migration. J. Biol. Chem. 271(46):29393–29399, 1996.
Zaman, M. H. A multiscale probabilistic framework to model early steps in tumor metastasis. Mol. Cell Biomech. 4(3):133–141, 2007.
Zaman, M. H., R. D. Kamm, P. Matsudaira, and D. A. Lauffenburger. Computational model for cell migration in three-dimensional matrices. Biophys. J. 89(2):1389–1397, 2005.
Zaman, M. H., P. Matsudaira, and D. A. Lauffenburger. Understanding effects of matrix protease and matrix organization on directional persistence and translational speed in three-dimensional cell migration. Ann. Biomed. Eng. 35(1):91–100, 2007.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4