A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-010-9957-x below:

Poroviscoelastic Modeling of Liver Biomechanical Response in Unconfined Compression

References
  1. ABAQUS. ABAQUS User’s Manual (Version 6.8). Providence, RI: Dassault Systemes Simulia Corp., 2008.

    Google Scholar 

  2. Biot, M. A. Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 13(4):1482–1498, 1962.

    Article  Google Scholar 

  3. Bowen, R. M. Theory of mixtures. In: Continuum Physics, Vol. III, edited by A. C. Eringen. New York: Academic Press, 1976.

    Google Scholar 

  4. Bowen, R. M. Incompressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 18(9):1129–1148, 1980.

    Article  CAS  Google Scholar 

  5. Byrne, D. P., D. Lacroix, J. A. Planell, D. J. Kelly, and P. J. Prendergast. Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: application of mechanobiological models in tissue engineering. Biomaterials 28:5544–5554, 2007.

    Article  CAS  PubMed  Google Scholar 

  6. Capasso, G., and S. Mantica Numerical simulation of compaction and subsidence using ABAQUS. ABAQUS Users’ Conference, 2006.

  7. Cheng, S., and L. E. Bilston. Unconfined compression of white matter. J. Biomech. 40(1):117–124, 2007.

    Article  PubMed  Google Scholar 

  8. DiSilvestro, M. R., Q. Zhu, and J. F. Suh. Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: II—effect of variable strain rates. J. Biomech. Eng. 123(2):198–200, 2001.

    Article  CAS  PubMed  Google Scholar 

  9. Ford, T. R., J. R. Sachs, and J. B. Grotberg. Perialveolar interstitial resistance and compliance in isolated rat lung. J. Appl. Physiol. 70(6):2750–2756, 1991.

    Google Scholar 

  10. Franceschini, G., D. Bigoni, P. Regitnig, and G. A. Holzapfel. Brain tissue deforms similarly to filled elastomers and follows consolidation theory. J. Mech. Phys. Solids 54:2592–2620, 2006.

    Article  Google Scholar 

  11. Fung, Y. C. A First Course in Continuum Mechanics. New York: Springer, 1980.

    Google Scholar 

  12. Guyton, A. C., and J. E. Hall. Textbook of Medical Physiology (11th ed.). Philadelphia: Saunders, 2006.

    Google Scholar 

  13. Holmes, M. H. Finite deformation of soft tissue: analysis of a mixture model in uni-axial compression. J. Biomech. Eng. 108(4):372–381, 1986.

    Article  CAS  PubMed  Google Scholar 

  14. Lai, W. M., J. S. Hou, and V. C. Mow. A triphasic theory for the swelling and deformation behaviour of articular cartilage. J. Biomech. Eng. 113:245–258, 1991.

    Article  CAS  PubMed  Google Scholar 

  15. Lai, W. M., and V. C. Mow. Drag-induced compression of articular cartilage during a permeation experiment. Biorheology 17(1–2):111–123, 1980.

    CAS  PubMed  Google Scholar 

  16. Lai, W. M., V. C. Mow, and V. Roth. Effect of nonlinear strain-dependent permeability and rate of compression on the stress behavior of articular cartilage. J. Biomech. Eng. 103(2):61–66, 1981.

    Article  CAS  PubMed  Google Scholar 

  17. Li, L. P., J. Soulhat, M. D. Buschmann, and A. Shirazi-Adl. Nonlinear analysis of cartilage in unconfined ramp compression using a fibril reinforced poroelastic model. Clin. Biomech. 14:673–683, 1999.

    Article  CAS  Google Scholar 

  18. Mak, A. F. The apparent viscoelastic behavior of articular cartilage—the contributions from the intrinsic matrix viscoelasticity and interstitial fluid flows. J. Biomech. Eng. 108:123–130, 1986.

    Article  CAS  PubMed  Google Scholar 

  19. Melvin, J. W., R. L. Stalnaker, and V. L. Roberts. Impact injury mechanisms in abdominal organs. Soc. Auto. Eng. Trans. 730968:115–126, 1973.

    Google Scholar 

  20. Miller, K. Modeling soft tissues using biphasic theory—a word of caution. Comput. Methods Biomech. 1:216–263, 1998.

    Google Scholar 

  21. Miller, K. Constitutive modelling of abdominal organs. J. Biomech. 33(3):367–373, 2000.

    Article  CAS  PubMed  Google Scholar 

  22. Miller, K., and K. Chinzei. Mechanical properties of brain tissue in tension. J. Biomech. 35:483–490, 2002.

    Article  PubMed  Google Scholar 

  23. Moore, E. E., D. V. Feliciano, and K. L. Mattox. Trauma. New York: McGraw-Hill Professional, 2004.

    Google Scholar 

  24. Mow, V. C., S. C. Kuei, W. M. Lai, and C. G. Armstrong. Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J. Biomech. Eng. 102(1):73–84, 1980.

    Article  CAS  PubMed  Google Scholar 

  25. Nagashima, T., N. Tamaki, S. Matsumoto, B. Horwitz, and Y. Seguchi. Biomechanics of hydrocephalus: a new theoretical model. Neurosurgery 21(6):898–904, 1987.

    Article  CAS  PubMed  Google Scholar 

  26. Netti, P. A., L. T. Baxter, Y. Boucher, R. Skalak, and R. K. Jain. Time-dependent behavior of interstitial fluid pressure in solid tumors: implications for drug delivery. Cancer Res. 55:54541–55458, 1995.

    Google Scholar 

  27. Ng, E. Y. K., D. N. Ghista, and R. C. Jegathese. Perfusion studies of steady flow in poroelastic myocardium tissue. Comput. Methods Biomech. 8(6):349–357, 2005.

    Article  CAS  Google Scholar 

  28. Olberding, J. E., and J. K. Suh. A dual optimization method for the material parameter identification of a biphasic poroviscoelastic hydrogel: potential application to hypercompliant soft tissue. J. Biomech. 39:2468–2475, 2006.

    Article  PubMed  Google Scholar 

  29. Pena, A., M. D. Bolton, H. Whitehouse, and J. D. Pickard. Effects of brain ventricular shape on periventricular biomechanics: a finite element analysis. Neurosurgery 45(1):107–118, 1999.

    Article  CAS  PubMed  Google Scholar 

  30. Raghunathan, S., and J. L. Sparks. Modeling liver stress relaxation response: comparison of PVE and VE models. BMES 2009 Annual Fall Scientific Meeting, Pittsburg, PA, 2009.

  31. Simon, B. R. Multiphasic poroelastic finite element models for soft tissue structures. Appl. Mech. Rev. 45:191–218, 1992.

    Article  Google Scholar 

  32. Simon, B. R., J. S. Wu, M. W. Carlton, L. E. Kazarian, E. P. France, J. H. Evans, and O. C. Zienkiewicz. Poroelastic dynamic structural models of rhesus spinal motion segments. Spine 10(6):494–507, 1985.

    Article  CAS  PubMed  Google Scholar 

  33. Solymar, M., and I. L. Fabricus. Image analysis estimation of porosity and permeability of Arnager Greensand, Upper Cretaceous, Denmark. Phys. Chem. Earth Solid Earth Geodes. 24(7):587–591, 1998.

    Article  Google Scholar 

  34. Sparks, J. L., J. H. Bolte, IV, R. B. Dupaix, K. H. Jones, S. M. Steinberg, R. G. Herriott, J. A. Stammen, and B. R. Donnelly. Using pressure to predict liver injury risk from blunt impact. Stapp Car Crash J. 51:401–432, 2007.

    PubMed  Google Scholar 

  35. Sparks, J. L., and R. B. Dupaix. Constitutive modeling of rate-dependent stress-strain behavior of human liver in blunt impact loading. Ann. Biomed. Eng. 36(11):1883–1892, 2008.

    Article  PubMed  Google Scholar 

  36. Tamura, A., K. Omori, K. Miki, J. B. Lee, K. H. Yang, and A. I. King. Mechanical characterization of porcine abdominal organs. Stapp Car Crash J. 46:55–69, 2002.

    PubMed  Google Scholar 

  37. Terzaghi, K. The shearing resistance of saturated soils and the angle between the plane of shear. Proceedings of the First International SMFE Conference, vol. 1, Harvard, MA, pp. 54–56, 1936.

  38. Wu, J. Z., R. G. Dong, and A. W. Schopper. Analysis of effects of friction on the deformation behavior of soft tissues in unconfined compression tests. J. Biomech. 37(1):147–155, 2004.

    Article  PubMed  Google Scholar 

  39. Wu, J. Z., R. G. Dong, and W. P. Smutz. Elimination of the friction effects in unconfined compression tests of biomaterials and soft tissues. Proc. Inst. Mech. Eng. H 218(1):35–40, 2004.

    CAS  PubMed  Google Scholar 

  40. Wu, J. Z., W. Herzog, and M. Epstein. Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissue. J. Biomech. 31(2):165–169, 1998.

    Article  CAS  PubMed  Google Scholar 

  41. Yao, H., M. A. Justiz, D. Flagler, and W. Y. Gu. Effects of swelling pressure and hydraulic permeability on dynamic compressive behavior of lumbar annulus fibrosus. Ann. Biomed. Eng. 30(10):1234–1241, 2002.

    Article  PubMed  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4