ABAQUS. ABAQUS User’s Manual (Version 6.8). Providence, RI: Dassault Systemes Simulia Corp., 2008.
Biot, M. A. Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 13(4):1482–1498, 1962.
Bowen, R. M. Theory of mixtures. In: Continuum Physics, Vol. III, edited by A. C. Eringen. New York: Academic Press, 1976.
Bowen, R. M. Incompressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 18(9):1129–1148, 1980.
Byrne, D. P., D. Lacroix, J. A. Planell, D. J. Kelly, and P. J. Prendergast. Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: application of mechanobiological models in tissue engineering. Biomaterials 28:5544–5554, 2007.
Capasso, G., and S. Mantica Numerical simulation of compaction and subsidence using ABAQUS. ABAQUS Users’ Conference, 2006.
Cheng, S., and L. E. Bilston. Unconfined compression of white matter. J. Biomech. 40(1):117–124, 2007.
DiSilvestro, M. R., Q. Zhu, and J. F. Suh. Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: II—effect of variable strain rates. J. Biomech. Eng. 123(2):198–200, 2001.
Ford, T. R., J. R. Sachs, and J. B. Grotberg. Perialveolar interstitial resistance and compliance in isolated rat lung. J. Appl. Physiol. 70(6):2750–2756, 1991.
Franceschini, G., D. Bigoni, P. Regitnig, and G. A. Holzapfel. Brain tissue deforms similarly to filled elastomers and follows consolidation theory. J. Mech. Phys. Solids 54:2592–2620, 2006.
Fung, Y. C. A First Course in Continuum Mechanics. New York: Springer, 1980.
Guyton, A. C., and J. E. Hall. Textbook of Medical Physiology (11th ed.). Philadelphia: Saunders, 2006.
Holmes, M. H. Finite deformation of soft tissue: analysis of a mixture model in uni-axial compression. J. Biomech. Eng. 108(4):372–381, 1986.
Lai, W. M., J. S. Hou, and V. C. Mow. A triphasic theory for the swelling and deformation behaviour of articular cartilage. J. Biomech. Eng. 113:245–258, 1991.
Lai, W. M., and V. C. Mow. Drag-induced compression of articular cartilage during a permeation experiment. Biorheology 17(1–2):111–123, 1980.
Lai, W. M., V. C. Mow, and V. Roth. Effect of nonlinear strain-dependent permeability and rate of compression on the stress behavior of articular cartilage. J. Biomech. Eng. 103(2):61–66, 1981.
Li, L. P., J. Soulhat, M. D. Buschmann, and A. Shirazi-Adl. Nonlinear analysis of cartilage in unconfined ramp compression using a fibril reinforced poroelastic model. Clin. Biomech. 14:673–683, 1999.
Mak, A. F. The apparent viscoelastic behavior of articular cartilage—the contributions from the intrinsic matrix viscoelasticity and interstitial fluid flows. J. Biomech. Eng. 108:123–130, 1986.
Melvin, J. W., R. L. Stalnaker, and V. L. Roberts. Impact injury mechanisms in abdominal organs. Soc. Auto. Eng. Trans. 730968:115–126, 1973.
Miller, K. Modeling soft tissues using biphasic theory—a word of caution. Comput. Methods Biomech. 1:216–263, 1998.
Miller, K. Constitutive modelling of abdominal organs. J. Biomech. 33(3):367–373, 2000.
Miller, K., and K. Chinzei. Mechanical properties of brain tissue in tension. J. Biomech. 35:483–490, 2002.
Moore, E. E., D. V. Feliciano, and K. L. Mattox. Trauma. New York: McGraw-Hill Professional, 2004.
Mow, V. C., S. C. Kuei, W. M. Lai, and C. G. Armstrong. Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J. Biomech. Eng. 102(1):73–84, 1980.
Nagashima, T., N. Tamaki, S. Matsumoto, B. Horwitz, and Y. Seguchi. Biomechanics of hydrocephalus: a new theoretical model. Neurosurgery 21(6):898–904, 1987.
Netti, P. A., L. T. Baxter, Y. Boucher, R. Skalak, and R. K. Jain. Time-dependent behavior of interstitial fluid pressure in solid tumors: implications for drug delivery. Cancer Res. 55:54541–55458, 1995.
Ng, E. Y. K., D. N. Ghista, and R. C. Jegathese. Perfusion studies of steady flow in poroelastic myocardium tissue. Comput. Methods Biomech. 8(6):349–357, 2005.
Olberding, J. E., and J. K. Suh. A dual optimization method for the material parameter identification of a biphasic poroviscoelastic hydrogel: potential application to hypercompliant soft tissue. J. Biomech. 39:2468–2475, 2006.
Pena, A., M. D. Bolton, H. Whitehouse, and J. D. Pickard. Effects of brain ventricular shape on periventricular biomechanics: a finite element analysis. Neurosurgery 45(1):107–118, 1999.
Raghunathan, S., and J. L. Sparks. Modeling liver stress relaxation response: comparison of PVE and VE models. BMES 2009 Annual Fall Scientific Meeting, Pittsburg, PA, 2009.
Simon, B. R. Multiphasic poroelastic finite element models for soft tissue structures. Appl. Mech. Rev. 45:191–218, 1992.
Simon, B. R., J. S. Wu, M. W. Carlton, L. E. Kazarian, E. P. France, J. H. Evans, and O. C. Zienkiewicz. Poroelastic dynamic structural models of rhesus spinal motion segments. Spine 10(6):494–507, 1985.
Solymar, M., and I. L. Fabricus. Image analysis estimation of porosity and permeability of Arnager Greensand, Upper Cretaceous, Denmark. Phys. Chem. Earth Solid Earth Geodes. 24(7):587–591, 1998.
Sparks, J. L., J. H. Bolte, IV, R. B. Dupaix, K. H. Jones, S. M. Steinberg, R. G. Herriott, J. A. Stammen, and B. R. Donnelly. Using pressure to predict liver injury risk from blunt impact. Stapp Car Crash J. 51:401–432, 2007.
Sparks, J. L., and R. B. Dupaix. Constitutive modeling of rate-dependent stress-strain behavior of human liver in blunt impact loading. Ann. Biomed. Eng. 36(11):1883–1892, 2008.
Tamura, A., K. Omori, K. Miki, J. B. Lee, K. H. Yang, and A. I. King. Mechanical characterization of porcine abdominal organs. Stapp Car Crash J. 46:55–69, 2002.
Terzaghi, K. The shearing resistance of saturated soils and the angle between the plane of shear. Proceedings of the First International SMFE Conference, vol. 1, Harvard, MA, pp. 54–56, 1936.
Wu, J. Z., R. G. Dong, and A. W. Schopper. Analysis of effects of friction on the deformation behavior of soft tissues in unconfined compression tests. J. Biomech. 37(1):147–155, 2004.
Wu, J. Z., R. G. Dong, and W. P. Smutz. Elimination of the friction effects in unconfined compression tests of biomaterials and soft tissues. Proc. Inst. Mech. Eng. H 218(1):35–40, 2004.
Wu, J. Z., W. Herzog, and M. Epstein. Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissue. J. Biomech. 31(2):165–169, 1998.
Yao, H., M. A. Justiz, D. Flagler, and W. Y. Gu. Effects of swelling pressure and hydraulic permeability on dynamic compressive behavior of lumbar annulus fibrosus. Ann. Biomed. Eng. 30(10):1234–1241, 2002.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4