Aguilar, G. F., F. Gaspar, F. Lisbona, and C. Rodrigo. Numerical stabilization of Biot’s consolidation model by a perturbation on the flow equation. Int. J. Numer. Meth. Eng. 75:1282–1300, 2008.
Antoniou, J., T. Steffen, F. Nelson, N. Winterbottom, A. P. Hollander, R. A. Poole, M. Aebi, and M. Alini. The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J. Clin. Invest. 98(4):996–1003, 1996.
Biot, M. A. General theory of three-dimensional consolidation. J. Appl. Phys. 12(2):155–164, 1941.
Biot, M. A. Mechanics of Incremental Deformations; Theory of Elasticity and Viscoelasticity of Initially Stressed Solids and Fluids, Including Thermodynamic Foundations and Applications to Finite Strain. New York: Wiley, 1965.
Brezzi, F., and M. Fortin. Mixed and Hybrid Finite Element Methods. New York, NY: Springer-Verlag, pp. 200, 210–213, 1991.
Coussy, O. Poromechanics. Chichester, England; Hoboken, NJ: Wiley, 2004.
Cowin, S. C. Bone poroelasticity. J. Biomech. 32(3):217–238, 1999.
Ehlers, W., N. Karajan, and B. Markert. An extended biphasic model for charged hydrated tissues with application to the intervertebral disc. Biomech. Model. Mechanobiol. 8:233–251, 2009.
Elliott, D. M., and L. A. Setton. Anisotropic and inhomogeneous tensile behavior of the human anulus fibrosus: experimental measurement and material model predictions. J. Biomech. Eng. 123:256–263, 2001.
Ferronato, M., G. Gambolati, and P. Teatini. Ill conditioning of finite element poroelasticity equations. Int. J. Solids Struct. 38(34–35):5995–6014, 2001.
Gu, W. Y., X. G. Mao, R. J. Foste, M. Weidenbaum, V. C. Mow, and R. A. Rawlins. The anisotropic hydraulic permeability of human lumbar anulus fibrosus. Influence of age, degeneration, direction, and water content. Spine 24(23):2449–2455, 1999.
Huang, C. Y., and W.-Y. Gu. Effects of mechanical compression on metabolism and distribution of oxygen and lactate in intervertebral disc. J. Biomech. 41(6):1184–1196, 2008.
Huang, C. Y., V. C. Mow, and G. A. Ateshian. The role of flow-independent viscoelasticity in the biphasic tensile and compressive responses of articular cartilage. J. Biomech. Eng. 123(5):410–417, 2001.
Iatridis, J. C., L. A. Setton, M. Weidenbaum, and V. C. Mow. Alterations in the mechanical behavior of the human lumbar nucleus pulposus with degeneration and aging. J. Orthop. Res. 15(2):318–322, 1997.
Isaksson, H., C. C. van Donkelaar, R. Huiskes, and K. Ito. Corroboration of mechanoregulatory algorithms for tissue differentiation during fracture healing: comparison with in vivo results. J. Orthop. Res. 24(5):898–907, 2006.
Johannessen, W., and D. M. Elliott. Effects of degeneration on the biphasic material properties of human nucleus pulposus in confined compression. Spine 30(24):E724–E729, 2005.
Johannessen, W., E. J. Vresilovic, A. C. Wright, and D. M. Elliott. Intervertebral disc mechanics are restored following cyclic loading and unloaded recovery. Ann. Biomed. Eng. 32(1):70–76, 2004.
Kaasschieter, E. F., and A. J. H. Frijns. Squeezing a sponge: a three-dimensional solution in poroelasticity. Comput. Geosci. 7:49–59, 2003.
Koeller, W., F. Funke, and F. Hartmann. Biomechanical behavior of human intervertebral discs subjected to long lasting axial loading. Biorheology 21(5):675–686, 1984.
Lim, T. H., and J. H. Hong. Poroelastic properties of bovine vertebral trabecular bone. J. Orthop. Res. 18(4):671–677, 2000.
Mcmillan, D. W., G. Garbutt, and M. A. Adams. Effect of sustained loading on the water content of intervertebral discs: implications for disc metabolism. Ann. Rheum. Dis. 55(12):880–887, 1996.
Miga, M. I., K. D. Paulsen, and F. E. Kennedy. Von Neumann stability analysis of Biot’s general two-dimensional theory of consolidation. Int. J. Numer. Meth. Eng. 43(5):955–974, 1998.
Mow, V. C., W.-Y. Gu, and F.-H. Chen. Structure and function of articular cartilage and meniscus. In: Chapter 5: Basic Orthopaedic Biomechanics and Mechano-Biology, 3rd edn, edited by V. C. Mow and R. Huiskes. Philadelphia: Lippincott Williams and Wilkins, 2005, pp. 180–258.
Mow, V. C., and R. Huiskes. Basic Orthopaedic Biomechanics and Mechano-Biology (3rd ed.). Philadelphia: Lippincott Williams & Wilkins, p. 546, 2005.
Murad, M. A., V. Thomée, and A. F. D. Loula. Asymptotic behavior of semidiscrete finite-element approximations of Biot’s consolidation. SIAM J. Numer. Anal. 33(3):1065–1083, 1996.
Périé, D., D. Korda, and J. C. Iatridis. Confined compression experiments on bovine nucleus pulposus and annulus fibrosus: sensitivity of the experiment in the determination of compressive modulus and hydraulic permeability. J. Biomech. 38(11):2164–2171, 2005.
Prendergast, P. J., R. Huiskes, and K. Søballe. ESB Research Award 1996. Biophysical stimuli on cells during tissue differentiation at implant interfaces. J. Biomech. 30(6):539–548, 1997.
Sandhu, R. S., and E. L. Wilson. Finite-element analysis of seepage in elastic media. ASCE J. Eng. Mech. Div. 95:641–652, 1969.
Terzaghi, K., and R. B. Peck. Soil Mechanics in Engineering Practice (2nd ed.). New York: Wiley, 1967.
Vermeer, P. A., and A. Verruijt. Accuracy conditions for consolidation by finite elements. Int. J. Numer. Anal. Methods Geomech. 5:1–14, 1981.
Wang, W. D., J. G. Wang, Z. L. Wang, and T. Nogami. An unequal-order radial interpolation meshless method for Biot’s consolidation theory. Comput. Geotech. 34:61–70, 2007.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4