A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-010-9938-0 below:

Limitation of Finite Element Analysis of Poroelastic Behavior of Biological Tissues Undergoing Rapid Loading

References
  1. Aguilar, G. F., F. Gaspar, F. Lisbona, and C. Rodrigo. Numerical stabilization of Biot’s consolidation model by a perturbation on the flow equation. Int. J. Numer. Meth. Eng. 75:1282–1300, 2008.

    Article  Google Scholar 

  2. Antoniou, J., T. Steffen, F. Nelson, N. Winterbottom, A. P. Hollander, R. A. Poole, M. Aebi, and M. Alini. The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J. Clin. Invest. 98(4):996–1003, 1996.

    Article  CAS  PubMed  Google Scholar 

  3. Biot, M. A. General theory of three-dimensional consolidation. J. Appl. Phys. 12(2):155–164, 1941.

    Article  Google Scholar 

  4. Biot, M. A. Mechanics of Incremental Deformations; Theory of Elasticity and Viscoelasticity of Initially Stressed Solids and Fluids, Including Thermodynamic Foundations and Applications to Finite Strain. New York: Wiley, 1965.

    Google Scholar 

  5. Brezzi, F., and M. Fortin. Mixed and Hybrid Finite Element Methods. New York, NY: Springer-Verlag, pp. 200, 210–213, 1991.

  6. Coussy, O. Poromechanics. Chichester, England; Hoboken, NJ: Wiley, 2004.

    Google Scholar 

  7. Cowin, S. C. Bone poroelasticity. J. Biomech. 32(3):217–238, 1999.

    Article  CAS  PubMed  Google Scholar 

  8. Ehlers, W., N. Karajan, and B. Markert. An extended biphasic model for charged hydrated tissues with application to the intervertebral disc. Biomech. Model. Mechanobiol. 8:233–251, 2009.

    Article  CAS  PubMed  Google Scholar 

  9. Elliott, D. M., and L. A. Setton. Anisotropic and inhomogeneous tensile behavior of the human anulus fibrosus: experimental measurement and material model predictions. J. Biomech. Eng. 123:256–263, 2001.

    Article  CAS  PubMed  Google Scholar 

  10. Ferronato, M., G. Gambolati, and P. Teatini. Ill conditioning of finite element poroelasticity equations. Int. J. Solids Struct. 38(34–35):5995–6014, 2001.

    Article  Google Scholar 

  11. Gu, W. Y., X. G. Mao, R. J. Foste, M. Weidenbaum, V. C. Mow, and R. A. Rawlins. The anisotropic hydraulic permeability of human lumbar anulus fibrosus. Influence of age, degeneration, direction, and water content. Spine 24(23):2449–2455, 1999.

    Article  CAS  PubMed  Google Scholar 

  12. Huang, C. Y., and W.-Y. Gu. Effects of mechanical compression on metabolism and distribution of oxygen and lactate in intervertebral disc. J. Biomech. 41(6):1184–1196, 2008.

    Article  PubMed  Google Scholar 

  13. Huang, C. Y., V. C. Mow, and G. A. Ateshian. The role of flow-independent viscoelasticity in the biphasic tensile and compressive responses of articular cartilage. J. Biomech. Eng. 123(5):410–417, 2001.

    Article  CAS  PubMed  Google Scholar 

  14. Iatridis, J. C., L. A. Setton, M. Weidenbaum, and V. C. Mow. Alterations in the mechanical behavior of the human lumbar nucleus pulposus with degeneration and aging. J. Orthop. Res. 15(2):318–322, 1997.

    Article  CAS  PubMed  Google Scholar 

  15. Isaksson, H., C. C. van Donkelaar, R. Huiskes, and K. Ito. Corroboration of mechanoregulatory algorithms for tissue differentiation during fracture healing: comparison with in vivo results. J. Orthop. Res. 24(5):898–907, 2006.

    Article  PubMed  Google Scholar 

  16. Johannessen, W., and D. M. Elliott. Effects of degeneration on the biphasic material properties of human nucleus pulposus in confined compression. Spine 30(24):E724–E729, 2005.

    Article  PubMed  Google Scholar 

  17. Johannessen, W., E. J. Vresilovic, A. C. Wright, and D. M. Elliott. Intervertebral disc mechanics are restored following cyclic loading and unloaded recovery. Ann. Biomed. Eng. 32(1):70–76, 2004.

    Article  PubMed  Google Scholar 

  18. Kaasschieter, E. F., and A. J. H. Frijns. Squeezing a sponge: a three-dimensional solution in poroelasticity. Comput. Geosci. 7:49–59, 2003.

    Article  Google Scholar 

  19. Koeller, W., F. Funke, and F. Hartmann. Biomechanical behavior of human intervertebral discs subjected to long lasting axial loading. Biorheology 21(5):675–686, 1984.

    CAS  PubMed  Google Scholar 

  20. Lim, T. H., and J. H. Hong. Poroelastic properties of bovine vertebral trabecular bone. J. Orthop. Res. 18(4):671–677, 2000.

    Article  CAS  PubMed  Google Scholar 

  21. Mcmillan, D. W., G. Garbutt, and M. A. Adams. Effect of sustained loading on the water content of intervertebral discs: implications for disc metabolism. Ann. Rheum. Dis. 55(12):880–887, 1996.

    Article  CAS  PubMed  Google Scholar 

  22. Miga, M. I., K. D. Paulsen, and F. E. Kennedy. Von Neumann stability analysis of Biot’s general two-dimensional theory of consolidation. Int. J. Numer. Meth. Eng. 43(5):955–974, 1998.

    Article  Google Scholar 

  23. Mow, V. C., W.-Y. Gu, and F.-H. Chen. Structure and function of articular cartilage and meniscus. In: Chapter 5: Basic Orthopaedic Biomechanics and Mechano-Biology, 3rd edn, edited by V. C. Mow and R. Huiskes. Philadelphia: Lippincott Williams and Wilkins, 2005, pp. 180–258.

  24. Mow, V. C., and R. Huiskes. Basic Orthopaedic Biomechanics and Mechano-Biology (3rd ed.). Philadelphia: Lippincott Williams & Wilkins, p. 546, 2005.

    Google Scholar 

  25. Murad, M. A., V. Thomée, and A. F. D. Loula. Asymptotic behavior of semidiscrete finite-element approximations of Biot’s consolidation. SIAM J. Numer. Anal. 33(3):1065–1083, 1996.

    Article  Google Scholar 

  26. Périé, D., D. Korda, and J. C. Iatridis. Confined compression experiments on bovine nucleus pulposus and annulus fibrosus: sensitivity of the experiment in the determination of compressive modulus and hydraulic permeability. J. Biomech. 38(11):2164–2171, 2005.

    Article  PubMed  Google Scholar 

  27. Prendergast, P. J., R. Huiskes, and K. Søballe. ESB Research Award 1996. Biophysical stimuli on cells during tissue differentiation at implant interfaces. J. Biomech. 30(6):539–548, 1997.

    Article  CAS  PubMed  Google Scholar 

  28. Sandhu, R. S., and E. L. Wilson. Finite-element analysis of seepage in elastic media. ASCE J. Eng. Mech. Div. 95:641–652, 1969.

    Google Scholar 

  29. Terzaghi, K., and R. B. Peck. Soil Mechanics in Engineering Practice (2nd ed.). New York: Wiley, 1967.

    Google Scholar 

  30. Vermeer, P. A., and A. Verruijt. Accuracy conditions for consolidation by finite elements. Int. J. Numer. Anal. Methods Geomech. 5:1–14, 1981.

    Article  Google Scholar 

  31. Wang, W. D., J. G. Wang, Z. L. Wang, and T. Nogami. An unequal-order radial interpolation meshless method for Biot’s consolidation theory. Comput. Geotech. 34:61–70, 2007.

    Article  CAS  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4