Bailey, J. E., and D. F. Ollis. Biochemical Engineering Fundamentals (2nd ed.). New York: McGraw-Hill, 1986.
Bancroft, G. N., V. I. Sikavitsas, and A. G. Mikos. Design of a flow perfusion bioreactor system for bone tissue-engineering applications. Tissue Eng. 9:549–554, 2003.
Barocas, V. H., A. G. Moon, and R. G. Tranquillo. The fibroblast populated collagen microsphere assay of cell traction force—Part 2: measurement of the cell traction parameter. J. Biomech. Eng. 117:161–170, 1995.
Buckwalter, J. A., and H. J. Mankin. Articular cartilage. Part I: tissue design and chondrocyte–matrix interactions. J. Bone Joint Surg. Am. 79:600–611, 1997.
Chung, C. A., C. W. Yang, and C. W. Chen. Analysis of cell growth and diffusion in a scaffold for cartilage tissue engineering. Biotechnol. Bioeng. 94:1138–1146, 2006.
Chung, C. A., C. W. Chen, C. P. Chen, and C. S. Tseng. Enhancement of cell growth in tissue-engineering constructs under direct perfusion: modeling and simulation. Biotechnol. Bioeng. 97:1603–1616, 2007.
Coletti, F., S. Macchietto, and N. Elvassore. Mathematical modeling of three-dimensional cell cultures in perfusion bioreactors. Ind. Eng. Chem. Res. 45:8158–8169, 2006.
Dunn, J. C. Y., W.-Y. Chan, V. Cristini, J. S. Kim, J. Lowengrub, S. Singh, and B. M. Wu. Analysis of cell growth in three-dimensional scaffolds. Tissue Eng. 12:705–716, 2006.
Freed, L. E., J. C. Marquis, G. Vunjak-Novakovic, J. Emmanual, and R. Langer. Composition of cell–polymer cartilage implants. Biotechnol. Bioeng. 43:605–614, 1994.
Freed, L. E., G. Vunjak-Novakovic, J. C. Marquis, and R. Langer. Kinetics of chondrocyte growth in cell-polymer implants. Biotechnol. Bioeng. 43:597–604, 1994.
Galban, C. J., and B. R. Locke. Effects of spatial variation of cells and nutrient and product concentrations coupled with product inhibition on cell growth in a polymer scaffold. Biotechnol. Bioeng. 64:633–643, 1999.
Galban, C. J., and B. R. Locke. Analysis of cell growth kinetics and substrate diffusion in a polymer scaffold. Biotechnol. Bioeng. 65:121–132, 1999.
Goldstein, A. S., T. M. Juarez, C. D. Helmke, M. C. Gustin, and A. G. Mikos. Effects of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials 22:1279–1288, 2001.
Griffith, L. G., and G. Naughton. Tissue engineering—current challenges and expanding opportunities. Science 295:1009–1014, 2002.
Holy, C. E., M. S. Shoichet, and J. E. Davis. Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: investigating initial cell-seeding density and culture period. J. Biomed. Mater. Res. 51:376–382, 2000.
Koyama, H., E. W. Raines, K. E. Bornfeldt, J. M. Roberts, and R. Ross. Fibril collagen inhibits arterial smooth muscle proliferation through regulation of Cdk2 inhibitors. Cell 87:1069–1078, 1996.
Langer, R., and P. Vacanti. Tissue engineering. Science 260:920–925, 1993.
Lewis, M. C., B. D. MacArthur, J. Malda, G. Pettet, and C. P. Please. Heterogeneous proliferation within engineered cartilaginous tissue: the role of oxygen tension. Biotechnol. Bioeng. 91:607–615, 2005.
Lotz, M., S. Hashimoto, and K. Kuhn. Mechanisms of chondrocyte apoptosis. Osteoarthritis Cartilage 7:389–391, 1999.
Malda, J., T. B. F. Woodfield, F. van der Vloodt, C. Wilson, D. E. Martens, J. Tramper, C. A. van Blitterswijk, and J. Riesle. The effect of PEGT/PBT scaffold architecture on the composition of tissue engineered cartilage. Biomaterials 26:63–72, 2005.
Mahmoudifar, N., and P. M. Doran. Tissue engineering of human cartilage in bioreactors using single and composite cell-seeded scaffolds. Biotechnol. Bioeng. 91:338–355, 2005.
Obradovic, B., R. L. Carrier, G. Vunjak-Novakovic, and L. E. Freed. Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. Biotechnol. Bioeng. 63:197–205, 1999.
Obradovic, B., J. H. Meldon, L. E. Freed, and G. Vunjak-Novakovic. Glycosaminoglycan deposition in engineered cartilage: experiments and mathematical model. AIChE J. 46:1860–1871, 2000.
Olsen, L., J. A. Sherratt, P. K. Maini, and F. Arnold. A mathematical model for the capillary endothelial cell-extracellular matrix interactions in wound-healing angiogenesis. IMA J. Math. Appl. Med. Biol. 14:261–281, 1997.
Peppas, N. A., and R. Langer. New challenges in biomaterials. Science 263:1715–1720, 1994.
Sengers, B. G., C. C. van Donkelaar, C. W. J. Omens, and F. P. T. Baijens. Computational study of culture conditions and nutrient supply in cartilage tissue engineering. Biotechnol. Prog. 21:1252–1261, 2005.
Torzilli, P. A., E. Askari, and J. T. Jenkins. Water content and solute diffusion properties in articular cartilage. In: Biomechanics of Diarthrodial Joints, edited by V. C. Mow, A. Ratcliffe, and S. L. Woo. New York: Springer-Verlag, 1990, pp. 363–390.
Vunjak-Novakovic, G., B. Obradovic, I. Martin, P. M. Bursac, R. Langer, and L. E. Freed. Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnol. Prog. 14:193–202, 1998.
Weinberg, C. B., and E. Bell. Regulation of proliferation of bovine aortic endothelial cells, smooth muscle cells, and adventitial fibroblasts in collagen lattices. J. Cell physiol. 122:410–414, 1985.
Windhaber, R. A. J., and R. J. Wilkins. Functional characterization of glucose transport in bovine articular chondrocytes. Pflugers Arch. Eur. J. Physiol. 446:572–577, 2003.
Yang, C., S. W. Li, H. J. Helminen, J. S. Khillan, Y. Bao, and D. J. Prockop. Apoptosis of chondrocytes in transgenic mice lacking collagen II. Exp. Cell Res. 235:370–373, 1997.
Yoshizato, K., T. Taira, and N. Yamamoto. Growth inhibition of human fibroblasts by reconstituted collagen fibrils. Biomed. Res. 6:61–71, 1985.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4