A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-010-9909-5 below:

Analysis of Collagen and Glucose Modulated Cell Growth within Tissue Engineered Scaffolds

References
  1. Bailey, J. E., and D. F. Ollis. Biochemical Engineering Fundamentals (2nd ed.). New York: McGraw-Hill, 1986.

    Google Scholar 

  2. Bancroft, G. N., V. I. Sikavitsas, and A. G. Mikos. Design of a flow perfusion bioreactor system for bone tissue-engineering applications. Tissue Eng. 9:549–554, 2003.

    Article  CAS  PubMed  Google Scholar 

  3. Barocas, V. H., A. G. Moon, and R. G. Tranquillo. The fibroblast populated collagen microsphere assay of cell traction force—Part 2: measurement of the cell traction parameter. J. Biomech. Eng. 117:161–170, 1995.

    Article  CAS  PubMed  Google Scholar 

  4. Buckwalter, J. A., and H. J. Mankin. Articular cartilage. Part I: tissue design and chondrocyte–matrix interactions. J. Bone Joint Surg. Am. 79:600–611, 1997.

    Google Scholar 

  5. Chung, C. A., C. W. Yang, and C. W. Chen. Analysis of cell growth and diffusion in a scaffold for cartilage tissue engineering. Biotechnol. Bioeng. 94:1138–1146, 2006.

    Article  CAS  PubMed  Google Scholar 

  6. Chung, C. A., C. W. Chen, C. P. Chen, and C. S. Tseng. Enhancement of cell growth in tissue-engineering constructs under direct perfusion: modeling and simulation. Biotechnol. Bioeng. 97:1603–1616, 2007.

    Article  CAS  PubMed  Google Scholar 

  7. Coletti, F., S. Macchietto, and N. Elvassore. Mathematical modeling of three-dimensional cell cultures in perfusion bioreactors. Ind. Eng. Chem. Res. 45:8158–8169, 2006.

    Article  CAS  Google Scholar 

  8. Dunn, J. C. Y., W.-Y. Chan, V. Cristini, J. S. Kim, J. Lowengrub, S. Singh, and B. M. Wu. Analysis of cell growth in three-dimensional scaffolds. Tissue Eng. 12:705–716, 2006.

    Article  CAS  PubMed  Google Scholar 

  9. Freed, L. E., J. C. Marquis, G. Vunjak-Novakovic, J. Emmanual, and R. Langer. Composition of cell–polymer cartilage implants. Biotechnol. Bioeng. 43:605–614, 1994.

    Article  CAS  PubMed  Google Scholar 

  10. Freed, L. E., G. Vunjak-Novakovic, J. C. Marquis, and R. Langer. Kinetics of chondrocyte growth in cell-polymer implants. Biotechnol. Bioeng. 43:597–604, 1994.

    Article  CAS  PubMed  Google Scholar 

  11. Galban, C. J., and B. R. Locke. Effects of spatial variation of cells and nutrient and product concentrations coupled with product inhibition on cell growth in a polymer scaffold. Biotechnol. Bioeng. 64:633–643, 1999.

    Article  CAS  PubMed  Google Scholar 

  12. Galban, C. J., and B. R. Locke. Analysis of cell growth kinetics and substrate diffusion in a polymer scaffold. Biotechnol. Bioeng. 65:121–132, 1999.

    Article  CAS  PubMed  Google Scholar 

  13. Goldstein, A. S., T. M. Juarez, C. D. Helmke, M. C. Gustin, and A. G. Mikos. Effects of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials 22:1279–1288, 2001.

    Article  CAS  PubMed  Google Scholar 

  14. Griffith, L. G., and G. Naughton. Tissue engineering—current challenges and expanding opportunities. Science 295:1009–1014, 2002.

    Article  CAS  PubMed  Google Scholar 

  15. Holy, C. E., M. S. Shoichet, and J. E. Davis. Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: investigating initial cell-seeding density and culture period. J. Biomed. Mater. Res. 51:376–382, 2000.

    Article  CAS  PubMed  Google Scholar 

  16. Koyama, H., E. W. Raines, K. E. Bornfeldt, J. M. Roberts, and R. Ross. Fibril collagen inhibits arterial smooth muscle proliferation through regulation of Cdk2 inhibitors. Cell 87:1069–1078, 1996.

    Article  CAS  PubMed  Google Scholar 

  17. Langer, R., and P. Vacanti. Tissue engineering. Science 260:920–925, 1993.

    Article  CAS  PubMed  Google Scholar 

  18. Lewis, M. C., B. D. MacArthur, J. Malda, G. Pettet, and C. P. Please. Heterogeneous proliferation within engineered cartilaginous tissue: the role of oxygen tension. Biotechnol. Bioeng. 91:607–615, 2005.

    Article  CAS  PubMed  Google Scholar 

  19. Lotz, M., S. Hashimoto, and K. Kuhn. Mechanisms of chondrocyte apoptosis. Osteoarthritis Cartilage 7:389–391, 1999.

    Article  CAS  PubMed  Google Scholar 

  20. Malda, J., T. B. F. Woodfield, F. van der Vloodt, C. Wilson, D. E. Martens, J. Tramper, C. A. van Blitterswijk, and J. Riesle. The effect of PEGT/PBT scaffold architecture on the composition of tissue engineered cartilage. Biomaterials 26:63–72, 2005.

    Article  CAS  PubMed  Google Scholar 

  21. Mahmoudifar, N., and P. M. Doran. Tissue engineering of human cartilage in bioreactors using single and composite cell-seeded scaffolds. Biotechnol. Bioeng. 91:338–355, 2005.

    Article  CAS  PubMed  Google Scholar 

  22. Obradovic, B., R. L. Carrier, G. Vunjak-Novakovic, and L. E. Freed. Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. Biotechnol. Bioeng. 63:197–205, 1999.

    Article  CAS  PubMed  Google Scholar 

  23. Obradovic, B., J. H. Meldon, L. E. Freed, and G. Vunjak-Novakovic. Glycosaminoglycan deposition in engineered cartilage: experiments and mathematical model. AIChE J. 46:1860–1871, 2000.

    Article  CAS  Google Scholar 

  24. Olsen, L., J. A. Sherratt, P. K. Maini, and F. Arnold. A mathematical model for the capillary endothelial cell-extracellular matrix interactions in wound-healing angiogenesis. IMA J. Math. Appl. Med. Biol. 14:261–281, 1997.

    Article  CAS  PubMed  Google Scholar 

  25. Peppas, N. A., and R. Langer. New challenges in biomaterials. Science 263:1715–1720, 1994.

    Article  CAS  PubMed  Google Scholar 

  26. Sengers, B. G., C. C. van Donkelaar, C. W. J. Omens, and F. P. T. Baijens. Computational study of culture conditions and nutrient supply in cartilage tissue engineering. Biotechnol. Prog. 21:1252–1261, 2005.

    Article  CAS  PubMed  Google Scholar 

  27. Torzilli, P. A., E. Askari, and J. T. Jenkins. Water content and solute diffusion properties in articular cartilage. In: Biomechanics of Diarthrodial Joints, edited by V. C. Mow, A. Ratcliffe, and S. L. Woo. New York: Springer-Verlag, 1990, pp. 363–390.

    Google Scholar 

  28. Vunjak-Novakovic, G., B. Obradovic, I. Martin, P. M. Bursac, R. Langer, and L. E. Freed. Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnol. Prog. 14:193–202, 1998.

    Article  CAS  PubMed  Google Scholar 

  29. Weinberg, C. B., and E. Bell. Regulation of proliferation of bovine aortic endothelial cells, smooth muscle cells, and adventitial fibroblasts in collagen lattices. J. Cell physiol. 122:410–414, 1985.

    Article  CAS  PubMed  Google Scholar 

  30. Windhaber, R. A. J., and R. J. Wilkins. Functional characterization of glucose transport in bovine articular chondrocytes. Pflugers Arch. Eur. J. Physiol. 446:572–577, 2003.

    Article  CAS  Google Scholar 

  31. Yang, C., S. W. Li, H. J. Helminen, J. S. Khillan, Y. Bao, and D. J. Prockop. Apoptosis of chondrocytes in transgenic mice lacking collagen II. Exp. Cell Res. 235:370–373, 1997.

    Article  CAS  PubMed  Google Scholar 

  32. Yoshizato, K., T. Taira, and N. Yamamoto. Growth inhibition of human fibroblasts by reconstituted collagen fibrils. Biomed. Res. 6:61–71, 1985.

    CAS  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4