A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-010-0239-4 below:

Effect of Hemodynamic Forces on Platelet Aggregation Geometry

Abstract

The shear rate dependence of platelet aggregation geometries is investigated using a combination of in vitro and numerical experiments. Changes in upstream shear rate, γPw, are found to cause systematic changes in mature platelet aggregation geometries. However, γPw is not the only factor determining the shear rate experienced by a platelet moving over, and adhering to, a platelet aggregation: flow simulations demonstrate that naturally occurring variations in platelet aggregation geometry cause the local shear rate on the surface of a mature platelet aggregation to vary between zero and up to eight times γPw. Additionally, as a platelet aggregation grows, systematic changes in geometry are found, indicating that the local shear field over a growing platelet aggregation will differ from that over mature platelet aggregations.

This is a preview of subscription content, log in via an institution to check access.

Access this article Subscribe and save

Springer+ Basic

€34.99 /Month

Subscribe now Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others Explore related subjectsDiscover the latest articles and news from researchers in related subjects, suggested using machine learning. References
  1. Bhatt, D. L., and E. J. Topol. Scientific and therapeutic advances in antiplatelet therapy. Nat. Rev. 15:15–28, 2003.

    Google Scholar 

  2. Fouras, A., D. Lo Jacono, C. V. Nguyen, and K. Hourigan. Volumetric correlation PIV: a new technique for 3D velocity vector field measurement. Exp. Fluids 47:569–577, 2009.

    Article  Google Scholar 

  3. Fung, Y. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer, 1993.

    Google Scholar 

  4. Huo, Y. Q., and K. F. Ley. Role of platelets in the development of atherosclerosis. Trends Cardiovasc. Med. 14:18–22, 2004.

    Article  PubMed  CAS  Google Scholar 

  5. Jackson, S. P. The growing complexity of platelet aggregation. Blood 109:5087–5095, 2007.

    Article  PubMed  CAS  Google Scholar 

  6. Mangin, P., C. L. Yap, C. Nonne, S. A. Sturgeon, I. Goncalves, Y. P. Yuan, S. M. Schoenwaelder, C. E. Wright, F. Lanza, and S. P. Jackson. Thrombin overcomes the thrombosis defect associated with platelet gpvi/fcr gamma deficiency. Blood 107:4346–4353, 2006.

    Article  PubMed  CAS  Google Scholar 

  7. Maxwell, M. J., E. Westein, W. S. Nesbitt, S. Giuliano, S. M. Dopheide, and S. P. Jackson. Identification of a 2-stage platelet aggregation process mediating shear-dependent thrombus formation. Blood 109:566–576, 2007.

    Article  PubMed  CAS  Google Scholar 

  8. Nesbitt, W. S., E. Westein, F. J. Tovar-Lopez, E. Tolouei, A. Mitchell, J. Fu, J. Carberry, A. Fouras, and S. P. Jackson. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat. Med. 15:665–673, 2009.

    Article  PubMed  CAS  Google Scholar 

  9. Ono, A., E. Westein, S. Hsiao, W. S. Nesbitt, J. R. Hamilton, S. M. Schoenwaelder, and S. P. Jackson. Identification of a fibrin-independent platelet contractile mechanism regulating primary hemostasis and thrombus growth. Blood 112:90–99, 2008.

    Article  PubMed  CAS  Google Scholar 

  10. OpenCFD Limited 2010, OpenCFD Limited, Reading. http://www.openfoam.com. Accessed 22 Nov 2010.

  11. Papanastasiou, T., G. Georgiou, and A. Alexandrou. Viscous Fluid Flow. Boca Raton: CRC, 2000.

    Google Scholar 

  12. Ross, R., and J. A. Glomset. Pathogenesis of atherosclerosis. N. Engl. J. Med. 295:369–377, 1976.

    Article  PubMed  CAS  Google Scholar 

  13. Ruggeri, Z. M. Platelets in atherothrombosis. Nat. Med. 8:1227–1234, 2002.

    Article  PubMed  CAS  Google Scholar 

  14. Ruggeri, Z. M. The role of von willebrand factor in thrombus formation. Thromb. Res. 120:S5–S9, 2007.

    Article  PubMed  CAS  Google Scholar 

  15. Ruggeri, Z. M., and G. L. Mendolicchio. Adhesion mechanisms in platelet function. Circ. Res. 100:1673–1685, 2007.

    Article  PubMed  CAS  Google Scholar 

  16. Savage, B., F. Almus-Jacobs, and Z. M. Ruggeri. Specific synergy of multiple substrate–receptor interactions in platelet thrombus formation under flow. Cell 94:657–666, 1998.

    Article  PubMed  CAS  Google Scholar 

  17. Versteeg, H. K., and W. Malalaekera. Computational Fluid Dynamics. London: Longman Group, 1995.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge access to the facilities of the Australian Centre for Blood Disease (ACBD) and support from the ARC under Discovery grant DP0987643.

Author information Authors and Affiliations
  1. Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC, 3800, Australia

    Elham Tolouei, Christopher J. Butler, Andreas Fouras, Kris Ryan, Gregory J. Sheard & Josie Carberry

  2. Division of Biological Engineering, Faculty of Engineering, Monash University, Melbourne, VIC, 3800, Australia

    Elham Tolouei & Andreas Fouras

Authors
  1. Elham Tolouei
  2. Christopher J. Butler
  3. Andreas Fouras
  4. Kris Ryan
  5. Gregory J. Sheard
  6. Josie Carberry
Corresponding author

Correspondence to Josie Carberry.

Additional information

Associate Editor Konstantinos Konstantopoulos oversaw the review of this article.

About this article Cite this article

Tolouei, E., Butler, C.J., Fouras, A. et al. Effect of Hemodynamic Forces on Platelet Aggregation Geometry. Ann Biomed Eng 39, 1403–1413 (2011). https://doi.org/10.1007/s10439-010-0239-4

Download citation

Keywords

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4