Acharya, U. R., M. Sankaranarayanan, J. Nayak, C. Xiang, and T. Tamura. Automatic identification of cardiac health using modeling techniques: a comparative study. Inform. Sci. 178:4571–4582, 2008.
Andreao, R. V., B. Dorizzi, and J. Boudy. ECG signal analysis through hidden Markov models. IEEE Trans. Biomed. Eng. 53:1541–1549, 2006.
Bandyopadhyay, S., and S. K. Pal. Classification and Learning Using Genetic Algorithms. Berlin, Heidelberg: Springer-Verlag, 2007.
Burges, C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2:121–167, 1998.
Chazal, P., M. O’Dwyer, and R. B. Reilly. Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51:1196–1206, 2004.
Clifford, G. D., F. Azuaje, and P. E. McShary. Advanced Methods and Tools for ECG Data Analysis. Norwood, MA: Artech House, 2006.
de Chazal, F., and R. B. Reilly. A patient adapting heart beat classifier using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 53:2535–2543, 2006.
Ebrahimzadeh, A., and A. Khazaee. Detection of premature ventricular contractions using MLP neural networks: a comparative study. Measurement 43(1):103–112, 2009.
Ebrahimzadeh, A., A. Khazaee, and V. Ranaee. Classification of the electrocardiogram signals using supervised classifiers and efficient features. Comput. Methods Programs Biomed. 99:179–194, 2010.
Hsu, W. C., and C. J. Lin. A simple decomposition method for support vector machine. Mach. Learn. 46:219–314, 2002.
Huang, C., and C. Wang. A GA-based feature selection and parameters optimization for support vector machines. Expert Syst. Appl. 31:231–240, 2006.
Ince, T., S. Kiranyaz, and M. Gabbouj. A generic and robust system for automated patient-specific classification of electrocardiogram signals. IEEE Trans. Biomed. Eng. 56:1415–1426, 2009.
JoyMartis, R., C. Chakraborty, and A. K. Ray. A two-stage mechanism for registration and classification of ECG using Gaussian mixture model. Pattern Recognit. 42:2979–2988, 2009.
Khadra, L., A. S. Al-Fahoum, and S. Binajjaj. A quantitative analysis approach for cardiac arrhythmia classification using higher order spectral techniques. IEEE Trans. Biomed. Eng. 52:1840–1845, 2005.
Lagerholm, M., C. Peterson, G. Braccini, L. Edenbrandt, and L. Sornmo. Clustering ECG complexes using Hermite functions and self-organizing maps. IEEE Trans. Biomed. Eng. 47:839–847, 2000.
Lin, C. H. Frequency-domain features for ECG beat discrimination using grey relational analysis-based classifier. Comput. Math. Appl. 55:680–690, 2008.
Mallat, S. A Wavelet Tour of Signal Processing. London: Academic Press, 2002.
Mark, R. G., and G. B. Moody. MIT-BIH Arrhythmia Database, 1997 [Online]. Available: http://ecg.mit.edu/dbinfo.html.
Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs (3rd ed.). New York, NY: Springer, 1999.
Misiti, M., Y. Misiti, G. Oppenheim, and J. Poggi. Wavelet Toolbox User’s Guide. Natick: The MathWorks, Inc., 2007.
Mitra, S., M. Mitra, and B. B. Chaudhuri. A rough set-based inference engine for ECG classification. IEEE Trans. Instrum. Meas. 55:2198–2206, 2006.
Mohammadzadeh Asl, B., S. K. Setarehdan, and M. Mohebbi. Support vector machine-based arrhythmia classification using reduced features of heart rate variability. Artif. Intell. Med. 44:51–64, 2008.
Moody, G. B., and R. G. Mark. The impact of the MIT/BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3):45–50, 2001.
Osowski, S., T. Markiewicz, and L. T. Hoai. Recognition and classification system of arrhythmia using ensemble of neural networks. Measurement 41:610–617, 2008.
Sarvestani, R. R., R. Boostani, and M. Roopaei. VT and VF classification using trajectory analysis. Nonlinear Anal. 2008. doi:10.1016/j.na.2008.10.015.
Shyu, L. Y., Y. H. Wu, and W. C. Hu. Using wavelet transform and fuzzy neural network for VPC detection from the Holter ECG. IEEE Trans. Biomed. Eng. 51:1269–1273, 2004.
Sumathi, S., T. Hamsapriya, and P. Surekha. Evolutionary Intelligence: An Introduction to Theory and Applications with Matlab. Berlin, Heidelberg: Springer-Verlag, 2008.
Ubeyli, E. D. Support vector machines for detection of electrocardiographic changes in partial epileptic. Eng. Appl. Artif. Intell. 21:1196–1203, 2008.
Vapnik, V. Statistical Learning Theory. New York: Wiley, 1998.
Wu, C., G. Tzeng, Y. Goo, and W. Fang. A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy. Expert Syst. Appl. 32:397–408, 2007.
Yu, S. N., and K. T. Chou. Selection of significant for ECG beat classification. Expert Syst. Appl. 36:2088–2096, 2009.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4