A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-010-0229-6 below:

High Efficient System for Automatic Classification of the Electrocardiogram Beats

References
  1. Acharya, U. R., M. Sankaranarayanan, J. Nayak, C. Xiang, and T. Tamura. Automatic identification of cardiac health using modeling techniques: a comparative study. Inform. Sci. 178:4571–4582, 2008.

    Article  Google Scholar 

  2. Andreao, R. V., B. Dorizzi, and J. Boudy. ECG signal analysis through hidden Markov models. IEEE Trans. Biomed. Eng. 53:1541–1549, 2006.

    Article  PubMed  Google Scholar 

  3. Bandyopadhyay, S., and S. K. Pal. Classification and Learning Using Genetic Algorithms. Berlin, Heidelberg: Springer-Verlag, 2007.

    Google Scholar 

  4. Burges, C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2:121–167, 1998.

    Article  Google Scholar 

  5. Chazal, P., M. O’Dwyer, and R. B. Reilly. Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51:1196–1206, 2004.

    Article  PubMed  Google Scholar 

  6. Clifford, G. D., F. Azuaje, and P. E. McShary. Advanced Methods and Tools for ECG Data Analysis. Norwood, MA: Artech House, 2006.

    Google Scholar 

  7. de Chazal, F., and R. B. Reilly. A patient adapting heart beat classifier using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 53:2535–2543, 2006.

    Article  PubMed  Google Scholar 

  8. Ebrahimzadeh, A., and A. Khazaee. Detection of premature ventricular contractions using MLP neural networks: a comparative study. Measurement 43(1):103–112, 2009.

    Article  Google Scholar 

  9. Ebrahimzadeh, A., A. Khazaee, and V. Ranaee. Classification of the electrocardiogram signals using supervised classifiers and efficient features. Comput. Methods Programs Biomed. 99:179–194, 2010.

    Article  Google Scholar 

  10. Hsu, W. C., and C. J. Lin. A simple decomposition method for support vector machine. Mach. Learn. 46:219–314, 2002.

    Article  Google Scholar 

  11. Huang, C., and C. Wang. A GA-based feature selection and parameters optimization for support vector machines. Expert Syst. Appl. 31:231–240, 2006.

    Article  Google Scholar 

  12. Ince, T., S. Kiranyaz, and M. Gabbouj. A generic and robust system for automated patient-specific classification of electrocardiogram signals. IEEE Trans. Biomed. Eng. 56:1415–1426, 2009.

    Article  PubMed  Google Scholar 

  13. JoyMartis, R., C. Chakraborty, and A. K. Ray. A two-stage mechanism for registration and classification of ECG using Gaussian mixture model. Pattern Recognit. 42:2979–2988, 2009.

    Article  Google Scholar 

  14. Khadra, L., A. S. Al-Fahoum, and S. Binajjaj. A quantitative analysis approach for cardiac arrhythmia classification using higher order spectral techniques. IEEE Trans. Biomed. Eng. 52:1840–1845, 2005.

    Article  PubMed  Google Scholar 

  15. Lagerholm, M., C. Peterson, G. Braccini, L. Edenbrandt, and L. Sornmo. Clustering ECG complexes using Hermite functions and self-organizing maps. IEEE Trans. Biomed. Eng. 47:839–847, 2000.

    Article  Google Scholar 

  16. Lin, C. H. Frequency-domain features for ECG beat discrimination using grey relational analysis-based classifier. Comput. Math. Appl. 55:680–690, 2008.

    Article  Google Scholar 

  17. Mallat, S. A Wavelet Tour of Signal Processing. London: Academic Press, 2002.

    Google Scholar 

  18. Mark, R. G., and G. B. Moody. MIT-BIH Arrhythmia Database, 1997 [Online]. Available: http://ecg.mit.edu/dbinfo.html.

  19. Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs (3rd ed.). New York, NY: Springer, 1999.

    Google Scholar 

  20. Misiti, M., Y. Misiti, G. Oppenheim, and J. Poggi. Wavelet Toolbox User’s Guide. Natick: The MathWorks, Inc., 2007.

    Google Scholar 

  21. Mitra, S., M. Mitra, and B. B. Chaudhuri. A rough set-based inference engine for ECG classification. IEEE Trans. Instrum. Meas. 55:2198–2206, 2006.

    Article  Google Scholar 

  22. Mohammadzadeh Asl, B., S. K. Setarehdan, and M. Mohebbi. Support vector machine-based arrhythmia classification using reduced features of heart rate variability. Artif. Intell. Med. 44:51–64, 2008.

    Article  Google Scholar 

  23. Moody, G. B., and R. G. Mark. The impact of the MIT/BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3):45–50, 2001.

    Article  CAS  PubMed  Google Scholar 

  24. Osowski, S., T. Markiewicz, and L. T. Hoai. Recognition and classification system of arrhythmia using ensemble of neural networks. Measurement 41:610–617, 2008.

    Article  Google Scholar 

  25. Sarvestani, R. R., R. Boostani, and M. Roopaei. VT and VF classification using trajectory analysis. Nonlinear Anal. 2008. doi:10.1016/j.na.2008.10.015.

  26. Shyu, L. Y., Y. H. Wu, and W. C. Hu. Using wavelet transform and fuzzy neural network for VPC detection from the Holter ECG. IEEE Trans. Biomed. Eng. 51:1269–1273, 2004.

    Article  PubMed  Google Scholar 

  27. Sumathi, S., T. Hamsapriya, and P. Surekha. Evolutionary Intelligence: An Introduction to Theory and Applications with Matlab. Berlin, Heidelberg: Springer-Verlag, 2008.

    Google Scholar 

  28. Ubeyli, E. D. Support vector machines for detection of electrocardiographic changes in partial epileptic. Eng. Appl. Artif. Intell. 21:1196–1203, 2008.

    Article  Google Scholar 

  29. Vapnik, V. Statistical Learning Theory. New York: Wiley, 1998.

    Google Scholar 

  30. Wu, C., G. Tzeng, Y. Goo, and W. Fang. A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy. Expert Syst. Appl. 32:397–408, 2007.

    Article  Google Scholar 

  31. Yu, S. N., and K. T. Chou. Selection of significant for ECG beat classification. Expert Syst. Appl. 36:2088–2096, 2009.

    Article  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4