A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-010-0220-2 below:

Biomedical Engineering Strategies in System Design Space

Abstract

Modern systems biology and synthetic bioengineering face two major challenges in relating properties of the genetic components of a natural or engineered system to its integrated behavior. The first is the fundamental unsolved problem of relating the digital representation of the genotype to the analog representation of the parameters for the molecular components. For example, knowing the DNA sequence does not allow one to determine the kinetic parameters of an enzyme. The second is the fundamental unsolved problem of relating the parameters of the components and the environment to the phenotype of the global system. For example, knowing the parameters does not tell one how many qualitatively distinct phenotypes are in the organism’s repertoire or the relative fitness of the phenotypes in different environments. These also are challenges for biomedical engineers as they attempt to develop therapeutic strategies to treat pathology or to redirect normal cellular functions for biotechnological purposes. In this article, the second of these fundamental challenges will be addressed, and the notion of a “system design space” for relating the parameter space of components to the phenotype space of bioengineering systems will be focused upon. First, the concept of a system design space will be motivated by introducing one of its key components from an intuitive perspective. Second, a simple linear example will be used to illustrate a generic method for constructing the design space in which qualitatively distinct phenotypes can be identified and counted, their fitness analyzed and compared, and their tolerance to change measured. Third, two examples of nonlinear systems from different areas of biomedical engineering will be presented. Finally, after giving reference to a few other applications that have made use of the system design space approach to reveal important design principles, some concluding remarks concerning challenges and opportunities for further development will be made.

This is a preview of subscription content, log in via an institution to check access.

Access this article Subscribe and save

Springer+ Basic

€34.99 /Month

Subscribe now Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others Explore related subjectsDiscover the latest articles and news from researchers in related subjects, suggested using machine learning. References
  1. Bershadsky, A. D., C. Ballestrem, L. Carramusa, Y. Zilberman, B. Gilquin, et al. Assembly and mechanosensory function of focal adhesions: experiments and models. Eur. J. Cell Biol. 85:165–173, 2006.

    Article  PubMed  CAS  Google Scholar 

  2. Brenner, S. Genomics: the end of the beginning. Science 287:2173–2174, 2000.

    Article  PubMed  CAS  Google Scholar 

  3. Carson, E. R., and C. Cobelli. Modeling Methodology for Physiology and Medicine. San Diego: Academic Press, 2001.

    Google Scholar 

  4. Cirit, M., M. Krajcovic, C. K. Choi, E. S. Welf, A. F. Horwitz, and J. M. Haugh. Stochastic model of integrin-mediated signaling and adhesion dynamics at the leading edges of migrating cells. PLoS Comput. Biol. 6:e1000688, 2010.

    Article  PubMed  Google Scholar 

  5. Coelho, P. M. B. M., A. Salvador, and M. A. Savageau. Global tolerance of biochemical systems and the design of moiety-transfer cycles. PLoS Comput. Biol. 5(3):e1000319, 2009.

    Article  PubMed  Google Scholar 

  6. Coelho, P. M. B. M., A. Salvador, and M. A. Savageau. Relating genotype to phenotype via the quantitative behavior of the NADPH redox cycle in human erythrocytes: mutant analysis. PLoS One 5(9):e13031, 2010.

    Article  PubMed  Google Scholar 

  7. Daun, S., J. Rubin, Y. Vodovotz, A. Roy, R. Parker, and G. Clermont. An ensemble of models of the acute inflammatory response to bacterial lipopolysaccharide in rats: results from parameter space reduction. J. Theor. Biol. 253:843–853, 2008.

    Article  PubMed  CAS  Google Scholar 

  8. Deshpande, V. S., R. M. McMeeking, and A. G. Evans. A bio-chemo-mechanical model for cell contractility. Proc. Natl. Acad. Sci. USA 103:14015–14020, 2006.

    Article  PubMed  CAS  Google Scholar 

  9. Fasani, R. A., and M. A. Savageau. Design Space Toolbox: a Matlab application for construction of the design space for molecular systems and analysis of their qualitatively distinct phenotypes. Bioinformatics 26:2601–2609, 2010.

    Article  PubMed  CAS  Google Scholar 

  10. Gagnon, M. K. J., S. H. Hausner, J. Marik, C. K. Abbey, J. F. Marshall, and J. L. Sutcliffe. High-throughput in vivo screening of targeted molecular imaging agents. Proc. Natl. Acad. Sci. USA 106:17904–17909, 2009.

    Article  PubMed  CAS  Google Scholar 

  11. Geysen, H. M., F. Schoenen, D. Wagner, and R. Wagner. Combinatorial compound libraries for drug discovery: an ongoing challenge. Nat. Rev. Drug Discov. 2:222–230, 2003.

    Article  PubMed  Google Scholar 

  12. Gutenkunst, R. N., J. J. Waterfall, F. P. Casey, K. S. Brown, C. R. Myers, et al. Universally sloppy parameter sensitivities in systems biology models. PLoS Comput. Biol. 3:1871–1878, 2007.

    Article  PubMed  CAS  Google Scholar 

  13. Hausner, S. H., D. DiCara, J. Marik, J. F. Marshall, and J. L. Sutcliffe. Use of a peptide derived from foot-and-mouth disease virus for the noninvasive imaging of human cancer: generation and evaluation of 4-[18F]fluorobenzoyl A20FMDV2 for in vivo imaging of integrin α v β6 expression with positron emission tomography. Cancer Res. 67:7833–7840, 2007.

    Article  PubMed  CAS  Google Scholar 

  14. Hlavacek, W. S. How to deal with large models? Mol. Syst. Biol. 5:240–242, 2009.

    Article  PubMed  Google Scholar 

  15. Lam, K. S., M. Lebl, and V. Krchnak. The “one-bead-one-compound” combinatorial library method. Chem. Rev. 97:411–448, 1997.

    Article  PubMed  CAS  Google Scholar 

  16. Mogilner, A. Mathematics of cell motility: have we got its number? J. Math. Biol. 58:105–134, 2009.

    Article  PubMed  Google Scholar 

  17. Novak, I. L., B. M. Slepchenko, A. Mogilner, and L. M. Loew. Cooperativity between cell contractility and adhesion. Phys. Rev. Lett. 93:268109, 2004.

    Article  PubMed  Google Scholar 

  18. Qi, J., R. M. Leahy, S. R. Cherry, A. Chatziioannou, and T. H. Farquhar. High-resolution 3D Bayesian image reconstruction using the microPET small-animal scanner. Phys. Med. Biol. 43:1001–1013, 1998.

    Article  PubMed  CAS  Google Scholar 

  19. Reams, A. B., E. Kofoid, M. A. Savageau, and J. R. Roth. Duplication frequency in a population of Salmonella enterica rapidly approaches steady state with or without recombination. Genetics 184:1077–1094, 2010.

    Article  PubMed  CAS  Google Scholar 

  20. Riviere, J. E. Comparative Pharmacokinetics: Principles, Techniques and Applications. Ames, IA: Iowa State University Press, 1999.

    Google Scholar 

  21. Savageau, M. A. Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology. Reading, MA: Addison-Wesley, 1976 [40th Anniversary Edition, A reprinting of the original edition, 2009, http://www.amazon.com/Biochemical-Systems-Analysis-Function-Molecular/dp/1449590764/].

  22. Savageau, M. A. Design principles for elementary gene circuits: elements, methods, and examples. Chaos 11:142–159, 2001.

    Article  PubMed  CAS  Google Scholar 

  23. Savageau, M. A. Design of the lac gene circuit revisited. Math. Biosci., in press, 2010.

  24. Savageau, M. A., and R. A. Fasani. Qualitatively distinct phenotypes in the design space of biochemical systems. FEBS Lett. 583:3914–3922, 2009.

    Article  PubMed  CAS  Google Scholar 

  25. Savageau, M. A., P. M. B. M. Coelho, R. Fasani, D. Tolla, and A. Salvador. Phenotypes and tolerances in the design space of biochemical systems. Proc. Natl. Acad. Sci. USA 106:6435–6440, 2009.

    Article  PubMed  CAS  Google Scholar 

  26. Sutcliffe-Goulden, J. L., et al. Rapid solid phase synthesis and biodistribution of 18F-labeled linear peptides. Eur. J. Nucl. Med. Mol. Imaging 29:754–759, 2002.

    Article  PubMed  CAS  Google Scholar 

  27. Tai, Y. C., et al. Performance evaluation of the microPET focus: a third-generation microPET scanner dedicated to animal imaging. J. Nucl. Med. 46:455–463, 2005.

    PubMed  Google Scholar 

  28. Tolla, D. A., and M. A. Savageau. Phenotypic repertoire of the FNR regulatory network in Escherichia coli. Mol. Microbiol. doi:10.1111/j.1365-2958.2010.07437.x.

  29. Vogel, V., and M. Sheetz. Cell fate regulation by coupling mechanical cycles to biochemical signaling pathways. Curr. Opin. Cell Biol. 21:38–46, 2009.

    Article  PubMed  CAS  Google Scholar 

  30. Welf, E. S., and J. M. Haugh. Stochastic dynamics of membrane protrusion mediated by the DOCK180/Rac pathway in migrating cells. Cell. Mol. Bioeng. 3:30–39, 2010.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Julie Sutcliffe as well as Erik Welf and Jason Haugh for sharing figures from their study, Rick Fasani for assistance in constructing the system design spaces, and Pedro Coelho, Dean Tolla, Phillip Seitzer, and Jason Lomnitz for their fruitful discussions. I also wish to thank the anonymous reviewers who made comments and suggestions that helped in substantially improving the manuscript. This study was supported in part by the U.S. Public Health Service Grant R01-GM30054, and by a Stanislaw Ulam Distinguished Scholar Award from the Center for Non-Linear Studies of the Los Alamos National Laboratory.

Author information Authors and Affiliations
  1. Department of Biomedical Engineering, The University of California, One Shields Avenue, Davis, CA, 95616-5294, USA

    Michael A. Savageau

Authors
  1. Michael A. Savageau
Corresponding author

Correspondence to Michael A. Savageau.

Additional information

Associate Editor Angelique Louie oversaw the review of this article.

About this article Cite this article

Savageau, M.A. Biomedical Engineering Strategies in System Design Space. Ann Biomed Eng 39, 1278–1295 (2011). https://doi.org/10.1007/s10439-010-0220-2

Download citation

Keywords

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4