Alonso, C., A. R. Pries, and P. Gaehtgens. Time-dependent rheological behavior of blood at low shear in narrow vertical tubes. Am. J. Physiol. 265:H553–H561, 1993.
Arnold, W. P., C. K. Mittal, S. Katsuki, and F. Murad. Nitric oxide activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophosphate levels in various tissue preparations. Proc. Natl Acad. Sci. U.S.A. 74:3203–3207, 1977.
Baker, M., and H. Wayland. On-line volume flow rate and velocity profile measurement for blood in microvessels. Microvasc. Res. 7:131–143, 1974.
Baskurt, O. K., O. Yalcin, S. Ozdem, J. K. Armstrong, and H. J. Meiselman. Modulation of endothelial nitric oxide synthase expression by red blood cell aggregation. Am. J. Physiol. Heart Circ. Physiol. 286:H222–H229, 2004.
Buerk, D. G., and C. E. Riva. Vasomotion and spontaneous low-frequency oscillations in blood flow and nitric oxide in cat optic nerve head. Microvasc. Res. 55:103–112, 1998.
Chen, X., D. Jaron, K. A. Barbee, and D. G. Buerk. The influence of radial rbc distribution, blood velocity profiles, and glycocalyx on coupled NO/O2 transport. J. Appl. Physiol. 100:482–492, 2006.
Condorelli, P., and S. C. George. In vivo control of soluble guanylate cyclase activation by nitric oxide: a kinetic analysis. Biophys. J. 80:2110–2119, 2001.
Condorelli, P., and S. C. George. Free nitric oxide diffusion in the bronchial microcirculation. Am. J. Physiol. Heart Circ. Physiol. 283:H2660–H2670, 2002.
Eich, R. F., T. Li, D. D. Lemon, D. H. Doherty, S. R. Curry, J. F. Aitken, A. J. Mathews, K. A. Johnson, R. D. Smith, G. N. Phillips, Jr., and J. S. Olson. Mechanism of no-induced oxidation of myoglobin and hemoglobin. Biochemistry 35:6976–6983, 1996.
El-Farra, N. H., P. D. Christofides, and J. C. Liao. Analysis of nitric oxide consumption by erythrocytes in blood vessels using a distributed multicellular model. Ann. Biomed. Eng. 31:294–309, 2003.
Figueroa, X. F., A. D. Martinez, D. R. Gonzalez, P. I. Jara, S. Ayala, and M. P. Boric. In vivo assessment of microvascular nitric oxide production and its relation with blood flow. Am. J. Physiol. Heart Circ. Physiol. 280:H1222–H1231, 2001.
Gkaliagkousi, E., J. Ritter, and A. Ferro. Platelet-derived nitric oxide signaling and regulation. Circ. Res. 101:654–662, 2007.
Goldsmith, H. L., G. R. Cokelet, and P. Gaehtgens. Robin fahraeus: evolution of his concepts in cardiovascular physiology. Am. J. Physiol. 257:H1005–H1015, 1989.
Han, T. H., A. Pelling, T. J. Jeon, J. K. Gimzewski, and J. C. Liao. Erythrocyte nitric oxide transport reduced by a submembrane cytoskeletal barrier. Biochim. Biophys. Acta. 1723:135–142, 2005.
Huang, K. T., T. H. Han, D. R. Hyduke, M. W. Vaughn, H. Van Herle, T. W. Hein, C. Zhang, L. Kuo, and J. C. Liao. Modulation of nitric oxide bioavailability by erythrocytes. Proc. Natl Acad. Sci. U.S.A. 98:11771–11776, 2001.
Intaglietta, M., N. R. Silverman, and W. R. Tompkins. Capillary flow velocity measurements in vivo and in situ by television methods. Microvasc. Res. 10:165–179, 1975.
Kanai, A. J., H. C. Strauss, G. A. Truskey, A. L. Crews, S. Grunfeld, and T. Malinski. Shear stress induces atp-independent transient nitric oxide release from vascular endothelial cells, measured directly with a porphyrinic microsensor. Circ. Res. 77:284–293, 1995.
Kavdia, M., and A. S. Popel. Wall shear stress differentially affects NO level in arterioles for volume expanders and hb-based O2 carriers. Microvasc. Res. 66:49–58, 2003.
Kim, Y. M., C. A. Bombeck, and T. R. Billiar. Nitric oxide as a bifunctional regulator of apoptosis. Circ. Res. 84:253–256, 1999.
Kim, S., R. L. Kong, A. S. Popel, M. Intaglietta, and P. C. Johnson. Temporal and spatial variations of cell-free layer width in arterioles. Am. J. Physiol. Heart Circ. Physiol. 293:H1526–H1535, 2007.
Kim, S., P. K. Ong, O. Yalcin, M. Intaglietta, and P. C. Johnson. The cell-free layer in microvascular blood flow. Biorheology 46:181–189, 2009.
Kuchan, M. J., and J. A. Frangos. Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Am. J. Physiol. 266:C628–C636, 1994.
Kuo, L., W. M. Chilian, and M. J. Davis. Coronary arteriolar myogenic response is independent of endothelium. Circ. Res. 66:860–866, 1990.
Lamkin-Kennard, K. A., D. Jaron, and D. G. Buerk. Impact of the fahraeus effect on NO and O2 biotransport: a computer model. Microcirculation 11:337–349, 2004.
Lee, B. K., T. Alexy, R. B. Wenby, and H. J. Meiselman. Red blood cell aggregation quantitated via Myrenne aggregometer and yield shear stress. Biorheology 44:29–35, 2007.
Liao, J. C., T. W. Hein, M. W. Vaughn, K. T. Huang, and L. Kuo. Intravascular flow decreases erythrocyte consumption of nitric oxide. Proc. Natl Acad. Sci. U.S.A. 96:8757–8761, 1999.
Liu, X., M. J. Miller, M. S. Joshi, H. Sadowska-Krowicka, D. A. Clark, and J. R. Lancaster, Jr. Diffusion-limited reaction of free nitric oxide with erythrocytes. J. Biol. Chem. 273:18709–18713, 1998.
Liu, X., A. Samouilov, J. R. Lancaster, Jr., and J. L. Zweier. Nitric oxide uptake by erythrocytes is primarily limited by extracellular diffusion not membrane resistance. J. Biol. Chem. 277:26194–26199, 2002.
Maeda, N., Y. Suzuki, J. Tanaka, and N. Tateishi. Erythrocyte flow and elasticity of microvessels evaluated by marginal cell-free layer and flow resistance. Am. J. Physiol. 271:H2454–H2461, 1996.
Namgung, B., P. K. Ong, P. C. Johnson, and S. Kim. Effect of cell-free layer variation on arteriolar wall shear stress. Ann. Biomed. Eng., 2010 [Epub ahead of print].
Namgung, B., P. K. Ong, Y. H. Wong, D. Lim, K. J. Chun, and S. Kim. A comparative study of histogram-based thresholding methods for the determination of cell-free layer width in small blood vessels. Physiol. Meas. 31:N61–N70, 2010.
Ong, P. K., B. Namgung, P. C. Johnson, and S. Kim. Effect of erythrocyte aggregation and flow rate on cell-free layer formation in arterioles. Am. J. Physiol. Heart Circ. Physiol. 298:H1870–H1878, 2010.
Palmer, R. M., A. G. Ferrige, and S. Moncada. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526, 1987.
Palmer, R. M., D. S. Ashton, and S. Moncada. Vascular endothelial cells synthesize nitric oxide from l-arginine. Nature 333:664–666, 1988.
Pries, A. R., T. W. Secomb, T. Gessner, M. B. Sperandio, J. F. Gross, and P. Gaehtgens. Resistance to blood flow in microvessels in vivo. Circ. Res. 75:904–915, 1994.
Ranjan, V., Z. Xiao, and S. L. Diamond. Constitutive nos expression in cultured endothelial cells is elevated by fluid shear stress. Am. J. Physiol. 269:H550–H555, 1995.
Secomb, T. W., R. Hsu, and A. R. Pries. A model for red blood cell motion in glycocalyx-lined capillaries. Am. J. Physiol. 274:H1016–H1022, 1998.
Sharan, M., and A. S. Popel. A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall. Biorheology 38:415–428, 2001.
Sogo, N., K. S. Magid, C. A. Shaw, D. J. Webb, and I. L. Megson. Inhibition of human platelet aggregation by nitric oxide donor drugs: relative contribution of cgmp-independent mechanisms. Biochem. Biophys. Res. Commun. 279:412–419, 2000.
Stone, J. R., and M. A. Marletta. Spectral and kinetic studies on the activation of soluble guanylate cyclase by nitric oxide. Biochemistry 35:1093–1099, 1996.
Tsoukias, N. M., M. Kavdia, and A. S. Popel. A theoretical model of nitric oxide transport in arterioles: frequency- vs. amplitude-dependent control of cgmp formation. Am. J. Physiol. Heart Circ. Physiol. 286:H1043–H1056, 2004.
Vaughn, M. W., L. Kuo, and J. C. Liao. Effective diffusion distance of nitric oxide in the microcirculation. Am. J. Physiol. 274:H1705–H1714, 1998.
Vaughn, M. W., K. T. Huang, L. Kuo, and J. C. Liao. Erythrocytes possess an intrinsic barrier to nitric oxide consumption. J. Biol. Chem. 275:2342–2348, 2000.
Vaughn, M. W., K. T. Huang, L. Kuo, and J. C. Liao. Erythrocyte consumption of nitric oxide: competition experiment and model analysis. Nitric Oxide 5:18–31, 2001.
Vaya, A., C. Falco, P. Fernandez, T. Contreras, M. Valls, and J. Aznar. Erythrocyte aggregation determined with the Myrenne aggregometer at two modes (m0, m1) and at two times (5 and 10 sec). Clin. Hemorheol. Microcirc. 29:119–127, 2003.
Wayland, H., and P. C. Johnson. Erythrocyte velocity measurement in microvessels by a two-slit photometric method. J. Appl. Physiol. 22:333–337, 1967.
Yalcin, O., P. Ulker, U. Yavuzer, H. J. Meiselman, and O. K. Baskurt. Nitric oxide generation by endothelial cells exposed to shear stress in glass tubes perfused with red blood cell suspensions: role of aggregation. Am. J. Physiol. Heart Circ. Physiol. 294:H2098–H2105, 2008.
Zhang, J., P. C. Johnson, and A. S. Popel. Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows. Microvasc. Res. 77:265–272, 2009.
Zhao, Y., P. E. Brandish, D. P. Ballou, and M. A. Marletta. A molecular basis for nitric oxide sensing by soluble guanylate cyclase. Proc. Natl Acad. Sci. U.S.A. 96:14753–14758, 1999.
Zuckerbraun, B. S., D. A. Stoyanovsky, R. Sengupta, R. A. Shapiro, B. A. Ozanich, J. Rao, J. E. Barbato, and E. Tzeng. Nitric oxide-induced inhibition of smooth muscle cell proliferation involves s-nitrosation and inactivation of rhoa. Am. J. Physiol. Cell Physiol. 292:C824–C831, 2007.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4