A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-010-0216-y below:

Modulation of NO Bioavailability by Temporal Variation of the Cell-Free Layer Width in Small Arterioles

References
  1. Alonso, C., A. R. Pries, and P. Gaehtgens. Time-dependent rheological behavior of blood at low shear in narrow vertical tubes. Am. J. Physiol. 265:H553–H561, 1993.

    CAS  PubMed  Google Scholar 

  2. Arnold, W. P., C. K. Mittal, S. Katsuki, and F. Murad. Nitric oxide activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophosphate levels in various tissue preparations. Proc. Natl Acad. Sci. U.S.A. 74:3203–3207, 1977.

    Article  CAS  PubMed  Google Scholar 

  3. Baker, M., and H. Wayland. On-line volume flow rate and velocity profile measurement for blood in microvessels. Microvasc. Res. 7:131–143, 1974.

    Article  CAS  PubMed  Google Scholar 

  4. Baskurt, O. K., O. Yalcin, S. Ozdem, J. K. Armstrong, and H. J. Meiselman. Modulation of endothelial nitric oxide synthase expression by red blood cell aggregation. Am. J. Physiol. Heart Circ. Physiol. 286:H222–H229, 2004.

    Article  CAS  PubMed  Google Scholar 

  5. Buerk, D. G., and C. E. Riva. Vasomotion and spontaneous low-frequency oscillations in blood flow and nitric oxide in cat optic nerve head. Microvasc. Res. 55:103–112, 1998.

    Article  CAS  PubMed  Google Scholar 

  6. Chen, X., D. Jaron, K. A. Barbee, and D. G. Buerk. The influence of radial rbc distribution, blood velocity profiles, and glycocalyx on coupled NO/O2 transport. J. Appl. Physiol. 100:482–492, 2006.

    Article  CAS  PubMed  Google Scholar 

  7. Condorelli, P., and S. C. George. In vivo control of soluble guanylate cyclase activation by nitric oxide: a kinetic analysis. Biophys. J. 80:2110–2119, 2001.

    Article  CAS  PubMed  Google Scholar 

  8. Condorelli, P., and S. C. George. Free nitric oxide diffusion in the bronchial microcirculation. Am. J. Physiol. Heart Circ. Physiol. 283:H2660–H2670, 2002.

    CAS  PubMed  Google Scholar 

  9. Eich, R. F., T. Li, D. D. Lemon, D. H. Doherty, S. R. Curry, J. F. Aitken, A. J. Mathews, K. A. Johnson, R. D. Smith, G. N. Phillips, Jr., and J. S. Olson. Mechanism of no-induced oxidation of myoglobin and hemoglobin. Biochemistry 35:6976–6983, 1996.

    Article  CAS  PubMed  Google Scholar 

  10. El-Farra, N. H., P. D. Christofides, and J. C. Liao. Analysis of nitric oxide consumption by erythrocytes in blood vessels using a distributed multicellular model. Ann. Biomed. Eng. 31:294–309, 2003.

    Article  PubMed  Google Scholar 

  11. Figueroa, X. F., A. D. Martinez, D. R. Gonzalez, P. I. Jara, S. Ayala, and M. P. Boric. In vivo assessment of microvascular nitric oxide production and its relation with blood flow. Am. J. Physiol. Heart Circ. Physiol. 280:H1222–H1231, 2001.

    CAS  PubMed  Google Scholar 

  12. Gkaliagkousi, E., J. Ritter, and A. Ferro. Platelet-derived nitric oxide signaling and regulation. Circ. Res. 101:654–662, 2007.

    Article  CAS  PubMed  Google Scholar 

  13. Goldsmith, H. L., G. R. Cokelet, and P. Gaehtgens. Robin fahraeus: evolution of his concepts in cardiovascular physiology. Am. J. Physiol. 257:H1005–H1015, 1989.

    CAS  PubMed  Google Scholar 

  14. Han, T. H., A. Pelling, T. J. Jeon, J. K. Gimzewski, and J. C. Liao. Erythrocyte nitric oxide transport reduced by a submembrane cytoskeletal barrier. Biochim. Biophys. Acta. 1723:135–142, 2005.

    CAS  PubMed  Google Scholar 

  15. Huang, K. T., T. H. Han, D. R. Hyduke, M. W. Vaughn, H. Van Herle, T. W. Hein, C. Zhang, L. Kuo, and J. C. Liao. Modulation of nitric oxide bioavailability by erythrocytes. Proc. Natl Acad. Sci. U.S.A. 98:11771–11776, 2001.

    Article  CAS  PubMed  Google Scholar 

  16. Intaglietta, M., N. R. Silverman, and W. R. Tompkins. Capillary flow velocity measurements in vivo and in situ by television methods. Microvasc. Res. 10:165–179, 1975.

    Article  CAS  PubMed  Google Scholar 

  17. Kanai, A. J., H. C. Strauss, G. A. Truskey, A. L. Crews, S. Grunfeld, and T. Malinski. Shear stress induces atp-independent transient nitric oxide release from vascular endothelial cells, measured directly with a porphyrinic microsensor. Circ. Res. 77:284–293, 1995.

    CAS  PubMed  Google Scholar 

  18. Kavdia, M., and A. S. Popel. Wall shear stress differentially affects NO level in arterioles for volume expanders and hb-based O2 carriers. Microvasc. Res. 66:49–58, 2003.

    Article  CAS  PubMed  Google Scholar 

  19. Kim, Y. M., C. A. Bombeck, and T. R. Billiar. Nitric oxide as a bifunctional regulator of apoptosis. Circ. Res. 84:253–256, 1999.

    CAS  PubMed  Google Scholar 

  20. Kim, S., R. L. Kong, A. S. Popel, M. Intaglietta, and P. C. Johnson. Temporal and spatial variations of cell-free layer width in arterioles. Am. J. Physiol. Heart Circ. Physiol. 293:H1526–H1535, 2007.

    Article  CAS  PubMed  Google Scholar 

  21. Kim, S., P. K. Ong, O. Yalcin, M. Intaglietta, and P. C. Johnson. The cell-free layer in microvascular blood flow. Biorheology 46:181–189, 2009.

    CAS  PubMed  Google Scholar 

  22. Kuchan, M. J., and J. A. Frangos. Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Am. J. Physiol. 266:C628–C636, 1994.

    CAS  PubMed  Google Scholar 

  23. Kuo, L., W. M. Chilian, and M. J. Davis. Coronary arteriolar myogenic response is independent of endothelium. Circ. Res. 66:860–866, 1990.

    CAS  PubMed  Google Scholar 

  24. Lamkin-Kennard, K. A., D. Jaron, and D. G. Buerk. Impact of the fahraeus effect on NO and O2 biotransport: a computer model. Microcirculation 11:337–349, 2004.

    Article  CAS  PubMed  Google Scholar 

  25. Lee, B. K., T. Alexy, R. B. Wenby, and H. J. Meiselman. Red blood cell aggregation quantitated via Myrenne aggregometer and yield shear stress. Biorheology 44:29–35, 2007.

    CAS  PubMed  Google Scholar 

  26. Liao, J. C., T. W. Hein, M. W. Vaughn, K. T. Huang, and L. Kuo. Intravascular flow decreases erythrocyte consumption of nitric oxide. Proc. Natl Acad. Sci. U.S.A. 96:8757–8761, 1999.

    Article  CAS  PubMed  Google Scholar 

  27. Liu, X., M. J. Miller, M. S. Joshi, H. Sadowska-Krowicka, D. A. Clark, and J. R. Lancaster, Jr. Diffusion-limited reaction of free nitric oxide with erythrocytes. J. Biol. Chem. 273:18709–18713, 1998.

    Article  CAS  PubMed  Google Scholar 

  28. Liu, X., A. Samouilov, J. R. Lancaster, Jr., and J. L. Zweier. Nitric oxide uptake by erythrocytes is primarily limited by extracellular diffusion not membrane resistance. J. Biol. Chem. 277:26194–26199, 2002.

    Article  CAS  PubMed  Google Scholar 

  29. Maeda, N., Y. Suzuki, J. Tanaka, and N. Tateishi. Erythrocyte flow and elasticity of microvessels evaluated by marginal cell-free layer and flow resistance. Am. J. Physiol. 271:H2454–H2461, 1996.

    CAS  PubMed  Google Scholar 

  30. Namgung, B., P. K. Ong, P. C. Johnson, and S. Kim. Effect of cell-free layer variation on arteriolar wall shear stress. Ann. Biomed. Eng., 2010 [Epub ahead of print].

  31. Namgung, B., P. K. Ong, Y. H. Wong, D. Lim, K. J. Chun, and S. Kim. A comparative study of histogram-based thresholding methods for the determination of cell-free layer width in small blood vessels. Physiol. Meas. 31:N61–N70, 2010.

    Article  PubMed  Google Scholar 

  32. Ong, P. K., B. Namgung, P. C. Johnson, and S. Kim. Effect of erythrocyte aggregation and flow rate on cell-free layer formation in arterioles. Am. J. Physiol. Heart Circ. Physiol. 298:H1870–H1878, 2010.

    Article  CAS  PubMed  Google Scholar 

  33. Palmer, R. M., A. G. Ferrige, and S. Moncada. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526, 1987.

    Article  CAS  PubMed  Google Scholar 

  34. Palmer, R. M., D. S. Ashton, and S. Moncada. Vascular endothelial cells synthesize nitric oxide from l-arginine. Nature 333:664–666, 1988.

    Article  CAS  PubMed  Google Scholar 

  35. Pries, A. R., T. W. Secomb, T. Gessner, M. B. Sperandio, J. F. Gross, and P. Gaehtgens. Resistance to blood flow in microvessels in vivo. Circ. Res. 75:904–915, 1994.

    CAS  PubMed  Google Scholar 

  36. Ranjan, V., Z. Xiao, and S. L. Diamond. Constitutive nos expression in cultured endothelial cells is elevated by fluid shear stress. Am. J. Physiol. 269:H550–H555, 1995.

    CAS  PubMed  Google Scholar 

  37. Secomb, T. W., R. Hsu, and A. R. Pries. A model for red blood cell motion in glycocalyx-lined capillaries. Am. J. Physiol. 274:H1016–H1022, 1998.

    CAS  PubMed  Google Scholar 

  38. Sharan, M., and A. S. Popel. A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall. Biorheology 38:415–428, 2001.

    CAS  PubMed  Google Scholar 

  39. Sogo, N., K. S. Magid, C. A. Shaw, D. J. Webb, and I. L. Megson. Inhibition of human platelet aggregation by nitric oxide donor drugs: relative contribution of cgmp-independent mechanisms. Biochem. Biophys. Res. Commun. 279:412–419, 2000.

    Article  CAS  PubMed  Google Scholar 

  40. Stone, J. R., and M. A. Marletta. Spectral and kinetic studies on the activation of soluble guanylate cyclase by nitric oxide. Biochemistry 35:1093–1099, 1996.

    Article  CAS  PubMed  Google Scholar 

  41. Tsoukias, N. M., M. Kavdia, and A. S. Popel. A theoretical model of nitric oxide transport in arterioles: frequency- vs. amplitude-dependent control of cgmp formation. Am. J. Physiol. Heart Circ. Physiol. 286:H1043–H1056, 2004.

    Article  CAS  PubMed  Google Scholar 

  42. Vaughn, M. W., L. Kuo, and J. C. Liao. Effective diffusion distance of nitric oxide in the microcirculation. Am. J. Physiol. 274:H1705–H1714, 1998.

    CAS  PubMed  Google Scholar 

  43. Vaughn, M. W., K. T. Huang, L. Kuo, and J. C. Liao. Erythrocytes possess an intrinsic barrier to nitric oxide consumption. J. Biol. Chem. 275:2342–2348, 2000.

    Article  CAS  PubMed  Google Scholar 

  44. Vaughn, M. W., K. T. Huang, L. Kuo, and J. C. Liao. Erythrocyte consumption of nitric oxide: competition experiment and model analysis. Nitric Oxide 5:18–31, 2001.

    Article  CAS  PubMed  Google Scholar 

  45. Vaya, A., C. Falco, P. Fernandez, T. Contreras, M. Valls, and J. Aznar. Erythrocyte aggregation determined with the Myrenne aggregometer at two modes (m0, m1) and at two times (5 and 10 sec). Clin. Hemorheol. Microcirc. 29:119–127, 2003.

    PubMed  Google Scholar 

  46. Wayland, H., and P. C. Johnson. Erythrocyte velocity measurement in microvessels by a two-slit photometric method. J. Appl. Physiol. 22:333–337, 1967.

    CAS  PubMed  Google Scholar 

  47. Yalcin, O., P. Ulker, U. Yavuzer, H. J. Meiselman, and O. K. Baskurt. Nitric oxide generation by endothelial cells exposed to shear stress in glass tubes perfused with red blood cell suspensions: role of aggregation. Am. J. Physiol. Heart Circ. Physiol. 294:H2098–H2105, 2008.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang, J., P. C. Johnson, and A. S. Popel. Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows. Microvasc. Res. 77:265–272, 2009.

    Article  PubMed  Google Scholar 

  49. Zhao, Y., P. E. Brandish, D. P. Ballou, and M. A. Marletta. A molecular basis for nitric oxide sensing by soluble guanylate cyclase. Proc. Natl Acad. Sci. U.S.A. 96:14753–14758, 1999.

    Article  CAS  PubMed  Google Scholar 

  50. Zuckerbraun, B. S., D. A. Stoyanovsky, R. Sengupta, R. A. Shapiro, B. A. Ozanich, J. Rao, J. E. Barbato, and E. Tzeng. Nitric oxide-induced inhibition of smooth muscle cell proliferation involves s-nitrosation and inactivation of rhoa. Am. J. Physiol. Cell Physiol. 292:C824–C831, 2007.

    Article  CAS  PubMed  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4