Beloussov, L. V. The Dynamic Architecture of a Developing Organism: An Interdisciplinary Approach to the Development of Organisms. Dordrecht, The Netherlands: Kluwer, 1998.
Beloussov, L. V. Mechanically based generative laws of morphogenesis. Phys. Biol. 5:15009, 2008.
Beloussov, L. V., and V. I. Grabovsky. Morphomechanics: goals, basic experiments and models. Int. J. Dev. Biol. 50:81–92, 2006.
Butler, J. K. An Experimental Analysis of Cardiac Loop Formation in the Chick. M.S. thesis, University of Texas, 1952.
Chien, S. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am. J. Physiol. Heart Circ. Physiol. 292:H1209–H1224, 2007.
Chowdhury, F., S. Na, D. Li, Y. C. Poh, T. S. Tanaka, F. Wang, and N. Wang. Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nat. Mater. 9:82–88, 2010.
Clark, E. B., N. Hu, P. Frommelt, G. K. Vandekieft, J. L. Dummett, and R. J. Tomanek. Effect of increased pressure on ventricular growth in stage 21 chick embryos. Am. J. Physiol. 257:H55–H61, 1989.
Dahl, K. N., A. J. Ribeiro, and J. Lammerding. Nuclear shape, mechanics, and mechanotransduction. Circ. Res. 102:1307–1318, 2008.
Desmond, M. E., and A. G. Jacobson. Embryonic brain enlargement requires cerebrospinal fluid pressure. Dev. Biol. 57:188–198, 1977.
Desmond, M. E., M. L. Levitan, and A. R. Haas. Internal luminal pressure during early chick embryonic brain growth: descriptive and empirical observations. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 285:737–747, 2005.
Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.
Fernandez-Gonzalez, R., and J. A. Zallen. Cell mechanics and feedback regulation of actomyosin networks. Sci. Signal. 2:pe78, 2009.
Filas, B. A., I. R. Efimov, and L. A. Taber. Optical coherence tomography as a tool for measuring morphogenetic deformation of the looping heart. Anat. Rec. 290:1057–1068, 2007.
Filas, B. A., A. K. Knutsen, P. V. Bayly, and L. A. Taber. A new method for measuring deformation of folding surfaces during morphogenesis. J. Biomech. Eng. 130:061010, 2008.
Fujimoto, J. G. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat. Biotechnol. 21:1361–1367, 2003.
Galbraith, C. G., R. Skalak, and S. Chien. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motil. Cytoskeleton 40:317–330, 1998.
Goodrum, G. R., and A. G. Jacobson. Cephalic flexure formation in the chick embryo. J. Exp. Zool. 216:399–408, 1981.
Guilak, F. Compression-induced changes in the shape and volume of the chondrocyte nucleus. J. Biomech. 28:1529–1541, 1995.
Gutzman, J. H., E. G. Graeden, L. A. Lowery, H. S. Holley, and H. Sive. Formation of the zebrafish midbrain–hindbrain boundary constriction requires laminin-dependent basal constriction. Mech. Dev. 125:974–983, 2008.
Hamburger, V., and H. L. Hamilton. A series of normal stages in the development of the chick embryo. J. Morphol. 88:49–92, 1951.
Humphrey, J. D. Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels. Cell Biochem. Biophys. 50:53–78, 2008.
Jaalouk, D. E., and J. Lammerding. Mechanotransduction gone awry. Nat. Rev. Mol. Cell Biol. 10:63–73, 2009.
Jenkins, M. W., F. Rothenberg, D. Roy, V. P. Nikolski, Z. Hu, M. Watanabe, D. L. Wilson, I. R. Efimov, and A. M. Rollins. 4D embryonic cardiography using gated optical coherence tomography. Opt. Express 14:736–748, 2006.
Jurisicova, A., S. Varmuza, and R. F. Casper. Programmed cell death and human embryo fragmentation. Mol. Hum. Reprod. 2:93–98, 1996.
Kassab, G. S., and Navia, J. A. Biomechanical considerations in the design of graft: the homeostasis hypothesis. Annu. Rev. Biomed. Eng. 8:499–535, 2006.
Kornikova, E. S., T. G. Troshina, S. V. Kremnyov, and L. V. Beloussov. Neuro-mesodermal patterns in artificially deformed embryonic explants: a role for mechano-geometry in tissue differentiation. Dev. Dyn. 239:885–896, 2010.
Krieg, M., Y. Arboleda-Estudillo, P. H. Puech, J. Kafer, F. Graner, D. J. Muller, and C. P. Heisenberg. Tensile forces govern germ-layer organization in zebrafish. Nat. Cell Biol. 10:429–436, 2008.
Maniotis, A. J., C. S. Chen, and D. E. Ingber. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl Acad. Sci. USA 94:849–854, 1997.
Manner, J. Cardiac looping in the chick embryo: a morphological review with special reference to terminological and biomechanical aspects of the looping process. Anat. Rec. 259:248–262, 2000.
Mizutani, T., H. Haga, and K. Kawabata. Cellular stiffness response to external deformation: tensional homeostasis in a single fibroblast. Cell Motil. Cytoskeleton 59:242–248, 2004.
Munro, E. M., and G. M. Odell. Polarized basolateral cell motility underlies invagination and convergent extension of the ascidian notochord. Development 129:13–24, 2002.
Nelson, C. M., R. P. Jean, J. L. Tan, W. F. Liu, N. J. Sniadecki, A. A. Spector, and C. S. Chen. Emergent patterns of growth controlled by multicellular form and mechanics. Proc. Natl Acad. Sci. USA 102:11594–11599, 2005.
Nerurkar, N. L., A. Ramasubramanian, and L. A. Taber. Morphogenetic adaptation of the looping embryonic heart to altered mechanical loads. Dev. Dyn. 235:1822–1829, 2006.
Pajerowski, J. D., K. N. Dahl, F. L. Zhong, P. J. Sammak, and D. E. Discher. Physical plasticity of the nucleus in stem cell differentiation. Proc. Natl Acad. Sci. USA 104:15619–15624, 2007.
Pouille, P. A., P. Ahmadi, A. C. Brunet, and E. Farge. Mechanical signals trigger Myosin II redistribution and mesoderm invagination in Drosophila embryos. Sci. Signal. 2:ra16, 2009.
Ramasubramanian, A., N. L. Nerurkar, K. H. Achtien, B. A. Filas, D. A. Voronov, and L. A. Taber. On modeling morphogenesis of the looping heart following mechanical perturbations. J. Biomech. Eng. 130:061018, 2008.
Reinhart-King, C. A., M. Dembo, and D. A. Hammer. Cell–cell mechanical communication through compliant substrates. Biophys. J. 95:6044–6051, 2008.
Remond, M. C., J. A. Fee, E. L. Elson, and L. A. Taber. Myosin-based contraction is not necessary for cardiac c-looping in the chick embryo. Anat. Embryol. (Berl.) 211:443–454, 2006.
Saez, A., M. Ghibaudo, A. Buguin, P. Silberzan, and B. Ladoux. Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc. Natl Acad. Sci. USA 104:8281–8286, 2007.
Taber, L. A. Biomechanics of growth, remodeling, and morphogenesis. Appl. Mech. Rev. 48:487–545, 1995.
Taber, L. A. Biophysical mechanisms of cardiac looping. Int. J. Dev. Biol. 50:323–332, 2006.
Taber, L. A. Theoretical study of Beloussov’s hyper-restoration hypothesis for mechanical regulation of morphogenesis. Biomech. Model. Mechanobiol. 7:427–441, 2008.
Taber, L. A. Towards a unified theory for morphomechanics. Philos. Trans. A Math. Phys. Eng. Sci. 367:3555–3583, 2009.
Trepat, X., L. Deng, S. S. An, D. Navajas, D. J. Tschumperlin, W. T. Gerthoffer, J. P. Butler, and J. J. Fredberg. Universal physical responses to stretch in the living cell. Nature 447:592–595, 2007.
Voronov, D. A., and L. A. Taber. Cardiac looping in experimental conditions: the effects of extraembryonic forces. Dev. Dyn. 224:413–421, 2002.
Wang, N., J. D. Tytell, and D. E. Ingber. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol. 10:75–82, 2009.
Wozniak, M. A., and C. S. Chen. Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol. 10:34–43, 2009.
Xu, G., P. S. Kemp, J. A. Hwu, A. M. Beagley, P. V. Bayly, and L. A. Taber. Opening angles and material properties of the early embryonic chick brain. J. Biomech. Eng.-Trans. ASME 132:071013, 2010.
Zamir, E. A., V. Srinivasan, R. Perucchio, and L. A. Taber. Mechanical asymmetry in the embryonic chick heart during looping. Ann. Biomed. Eng. 31:1327–1336, 2003.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4