A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-010-0161-9 below:

An Optimization Approach to Inverse Dynamics Provides Insight as to the Function of the Biarticular Muscles During Vertical Jumping

References
  1. Anderson, F. C., and M. G. Pandy. A dynamic optimization solution for vertical jumping in three dimensions. Comput. Methods Biomech. Biomed. Eng. 2:201–231, 1999.

    Article  Google Scholar 

  2. Bobbert, M. F., K. G. M. Gerritsen, M. C. A. Litjens, and A. J. VanSoest. Why is countermovement jump height greater than squat jump height? Med. Sci. Sports Exerc. 28:1402–1412, 1996.

    PubMed  CAS  Google Scholar 

  3. Bobbert, M. F., and J. P. van Zandwijk. Dynamics of force and muscle stimulation in human vertical jumping. Med. Sci. Sports Exerc. 31:303–310, 1999.

    Article  PubMed  CAS  Google Scholar 

  4. Cleather, D. J. Forces in the Knee During Vertical Jumping and Weightlifting. Ph.D. thesis, Imperial College London, 2010.

  5. Cleather, D. J., and A. M. J. Bull. Lower extremity musculoskeletal geometry effects the calculation of patellofemoral forces in vertical jumping and weightlifting. Proc. IME H J. Eng. Med. 224:1073–1083, 2010.

    Article  CAS  Google Scholar 

  6. Crowninshield, R. D., and R. A. Brand. A physiologically based criterion of muscle force prediction in locomotion. J. Biomech. 14:793–801, 1981.

    Article  PubMed  CAS  Google Scholar 

  7. de Leva, P. Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J. Biomech. 29:1223–1230, 1996.

    Article  PubMed  Google Scholar 

  8. Dumas, R., R. Aissaoui, and J. A. de Guise. A 3D generic inverse dynamic method using wrench notation and quaternion algebra. Comput. Methods Biomech. Biomed. Eng. 7:159–166, 2004.

    Article  CAS  Google Scholar 

  9. Dumas, R., E. Nicol, and L. Cheze. Influence of the 3D inverse dynamic method on the joint forces and moments during gait. J. Biomech. Eng. 129:786–790, 2007.

    Article  PubMed  CAS  Google Scholar 

  10. Fraysse, F., R. Dumas, L. Cheze, and X. Wang. Comparison of global and joint-to-joint methods for estimating the hip joint load and the muscle forces during walking. J. Biomech. 42:2357–2362, 2009.

    Article  PubMed  CAS  Google Scholar 

  11. Gregoire, L., H. E. Veeger, P. A. Huijing, and G. J. van Ingen Schenau. Role of mono- and bi-articular muscles in explosive movements. Int. J. Sports Med. 5:301–305, 1984.

    Article  PubMed  CAS  Google Scholar 

  12. Heise, G. D., D. W. Morgan, H. Hough, and M. Craib. Relationships between running economy and temporal EMG characteristics of bi-articular muscles. Int. J. Sports Med. 17:128–133, 1996.

    Article  PubMed  CAS  Google Scholar 

  13. Heise, G. D., M. Shinohara, and L. Binks. Biarticular leg muscles and links to running economy. Int. J. Sports Med. 29:688–691, 2008.

    Article  PubMed  CAS  Google Scholar 

  14. Horn, B. K. P. Closed form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. A 4:629–642, 1987.

    Article  Google Scholar 

  15. Horsman, M. D., H. F. J. M. Koopman, F. C. T. van der Helm, L. Poliacu Prose, and H. E. J. Veeger. Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity. Clin. Biomech. 22:239–247, 2007.

    Article  Google Scholar 

  16. Jacobs, R., M. F. Bobbert, and G. J. V. Schenau. Function of monoarticular and biarticular muscles in running. Med. Sci. Sports Exerc. 25:1163–1173, 1993.

    PubMed  CAS  Google Scholar 

  17. Jacobs, R., M. F. Bobbert, and G. J. van Ingen Schenau. Mechanical output from individual muscles during explosive leg extensions: the role of biarticular muscles. J. Biomech. 29:513–523, 1996.

    Article  PubMed  CAS  Google Scholar 

  18. Lees, A., J. Vanrenterghem, and D. de Clercq. The maximal and submaximal vertical jump: implications for strength and conditioning. J. Strength Cond. Res. 18:787–791, 2004.

    PubMed  Google Scholar 

  19. Nha, K. W., R. Papannagari, T. J. Gill, S. K. Van de Velde, A. A. Freiberg, H. E. Rubash, and G. Li. In vivo patellar tracking: Clinical motions and patellofemoral indices. J. Orthop. Res. 26:1067–1074, 2008.

    Article  PubMed  Google Scholar 

  20. Pandy, M. G., and F. E. Zajac. Optimal muscular coordination strategies for jumping. J. Biomech. 24:1–10, 1991.

    Article  PubMed  CAS  Google Scholar 

  21. Pandy, M. G., F. E. Zajac, E. Sim, and W. S. Levine. An optimal control model for maximum-height human jumping. J. Biomech. 23:1185–1198, 1990.

    Article  PubMed  CAS  Google Scholar 

  22. Pflum, M. A., K. B. Shelburne, M. R. Torry, M. J. Decker, and M. G. Pandy. Model prediction of anterior cruciate ligament force during drop-landings. Med. Sci. Sports Exerc. 36:1949–1958, 2004.

    Article  PubMed  Google Scholar 

  23. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C++: The Art of Scientific Computing. Cambridge, NY: Cambridge University Press, 1002 pp., 2002.

  24. Prilutsky, B. I., T. Isaka, A. M. Albrecht, and R. J. Gregor. Is coordination of two-joint leg muscles during load lifting consistent with the strategy of minimum fatigue? J. Biomech. 31:1025–1034, 1998.

    Article  PubMed  CAS  Google Scholar 

  25. Prilutsky, B. I., and V. M. Zatsiorsky. Tendon action of two-joint muscles: transfer of mechanical energy between joints during jumping, landing, and running. J. Biomech. 27:25–34, 1994.

    Article  PubMed  CAS  Google Scholar 

  26. Raikova, R. Prediction of individual muscle forces using Lagrange multipliers method—a model of the upper human limb in the sagittal plane. 1. Theoretical considerations. Comput. Methods Biomech. Biomed. Eng. 3:95–107, 2000.

    Article  Google Scholar 

  27. Raikova, R. Investigation of the peculiarities of two-joint muscles using a 3 DOF model of the human upper limb in the sagittal plane: an optimization approach. Comput. Methods Biomech. Biomed. Eng. 4:463–490, 2001.

    Article  Google Scholar 

  28. Van Sint Jan, S. Skeletal Landmark Definitions: Guidelines for Accurate and Reproducible Palpation. Department of Anatomy, University of Brussels, 2005. www.Ulb.Ac.Be/~Anatemb.

  29. Van Sint Jan, S., and U. D. Croce. Identifying the location of human skeletal landmarks: why standardized definitions are necessary—a proposal. Clin. Biomech. 20:659–660, 2005.

    Article  Google Scholar 

  30. van Soest, A. J., A. L. Schwab, M. F. Bobbert, and G. J. van Ingen Schenau. The influence of the biarticularity of the gastrocnemius muscle on vertical jumping achievement. J. Biomech. 26:1–8, 1993.

    Article  PubMed  Google Scholar 

  31. Vanezis, A., and A. Lees. A biomechanical analysis of good and poor performers of the vertical jump. Ergonomics 48:1594–1603, 2005.

    Article  PubMed  Google Scholar 

  32. Voronov, A. V. The roles of monoarticular and biarticular muscles of the lower limbs in terrestial locomotion. Hum. Physiol. 30:476–484, 2004.

    Article  Google Scholar 

  33. Winter, D. A. Biomechanics and Motor Control of Human Movement. Hoboken, NJ: John Wiley & Sons, 344 pp., 2005.

  34. Woltring, H. J. A Fortran package for generalized, cross-validatory spline smoothing and differentiation. Adv. Eng. Softw. 8:104–113, 1986.

    Google Scholar 

  35. Yamaguchi, G. T. Dynamic Modeling of Musculoskeletal Motion: A Vectorized Approach for Biomechanical Analysis in Three Dimensions. New York, NY: Springer, 257 pp., 2001.

  36. Zajac, F. E., R. R. Neptune, and S. A. Kautz. Biomechanics and muscle coordination of human walking. Part I. Introduction to concepts, power transfer, dynamics and simulations. Gait Posture 16:215–232, 2002.

    Article  PubMed  Google Scholar 

  37. Zatsiorsky, V. M. Kinetics of Human Motion. Champaign, IL: Human Kinetics, 672 pp., 2002.

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4