A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-010-0158-4 below:

Biotransport Phenomena in Freezing Mammalian Oocytes

  • Balasubramanian, S. K., R. T. Venkatasubramanian, A. Menon, and J. C. Bischof. Thermal injury prediction during cryoplasty through in vitro characterization of smooth muscle cell biophysics and viability. Ann. Biomed. Eng. 36:86–101, 2008.

    Article  PubMed  Google Scholar 

  • Benson, C. T., and J. K. Critser. Variation of water permeability (Lp) and its activation energy (Ea) among unfertilized golden hamster and ICR murine oocytes. Cryobiology 31:215–223, 1994.

    Article  CAS  PubMed  Google Scholar 

  • Berrada, M. S., and J. C. Bischof. Evaluation of freezing effects on human microvascular-endothelial cells (HMEC). Cryo Letters 22:353–366, 2001.

    CAS  PubMed  Google Scholar 

  • Bischof, J. C. Quantitative measurement and prediction of biophysical response during freezing in tissues. Annu. Rev. Biomed. Eng. 2:257–288, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Bischof, J. C., C. M. Ryan, R. G. Tompkins, M. L. Yarmush, and M. Toner. Ice formation in isolated human hepatocytes and human liver tissue. ASAIO J. 43:271–278, 1997.

    CAS  PubMed  Google Scholar 

  • Chen, S. U., Y. R. Lien, H. F. Chen, K. H. Chao, H. N. Ho, and Y. S. Yang. Open pulled straws for vitrification of mature mouse oocytes preserve patterns of meiotic spindles and chromosomes better than conventional straws. Hum. Reprod. 15:2598–2603, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Chen, S. U., Y. R. Lien, Y. Y. Cheng, H. F. Chen, H. N. Ho, and Y. S. Yang. Vitrification of mouse oocytes using closed pulled straws (CPS) achieves a high survival and preserves good patterns of meiotic spindles, compared with conventional straws, open pulled straws (OPS) and grids. Hum. Reprod. 16:2350–2356, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Darr, T. B., and A. Hubel. Freezing characteristics of isolated pig and human hepatocytes. Cell Transplant. 6:173–183, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Dessolle, L., V. de Larouziere, C. Ravel, I. Berthaut, J. M. Antoine, and J. Mandelbaum. Slow freezing and vitrification of human mature and immature oocytes. Gynecol. Obstet. Fertil. 37:712–719, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Devireddy, R. V., J. E. Coad, and J. C. Bischof. Microscopic and calorimetric assessment of freezing processes in uterine fibroid tumor tissue. Cryobiology 42:225–243, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Devireddy, R. V., D. Raha, and J. C. Bischof. Measurement of water transport during freezing in cell suspensions using a differential scanning calorimeter. Cryobiology 36:124–155, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Dowgert, M. F., and P. L. Steponkus. Effect of cold acclimation on intracellular ice formation in isolated protoplasts. Plant Physiol. 72:978–988, 1983.

    Article  CAS  PubMed  Google Scholar 

  • Fabbri, R. Cryopreservation of human oocytes and ovarian tissue. Cell Tissue Bank 7:113–122, 2006.

    Article  PubMed  Google Scholar 

  • Fahy, G. M., D. R. MacFarlane, C. A. Angell, and H. T. Meryman. Vitrification as an approach to cryopreservation. Cryobiology 21:407–426, 1984.

    Article  CAS  PubMed  Google Scholar 

  • Fahy, G. M., B. Wowk, J. Wu, and S. Paynter. Improved vitrification solutions based on the predictability of vitrification solution toxicity. Cryobiology 48:22–35, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Fowler, A., and M. Toner. Cryo-injury and biopreservation. Ann. N. Y. Acad. Sci. 1066:119–135, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Fray, M. D. Biological methods for archiving and maintaining mutant laboratory mice. Part I: conserving mutant strains. Methods Mol. Biol. 561:301–319, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Gardner, D. K., C. B. Sheehan, L. Rienzi, M. Katz-Jaffe, and M. G. Larman. Analysis of oocyte physiology to improve cryopreservation procedures. Theriogenology 67:64–72, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Han, B., and J. C. Bischof. Engineering challenges in tissue preservation. Cell Preserv. Technol. 2:91–112, 2004.

    Article  Google Scholar 

  • Harris, C. L., M. Toner, A. Hubel, E. G. Cravalho, M. L. Yarmush, and R. G. Tompkins. Cryopreservation of isolated hepatocytes: intracellular ice formation under various chemical and physical conditions. Cryobiology 28:436–444, 1991.

    Article  CAS  PubMed  Google Scholar 

  • He, X., and J. C. Bischof. Quantification of temperature and injury response in thermal therapy and cryosurgery. Crit. Rev. Biomed. Eng. 31:355–422, 2003.

    Article  PubMed  Google Scholar 

  • He, X., and J. C. Bischof. The kinetics of thermal injury in human renal carcinoma cells. Ann. Biomed. Eng. 33:502–510, 2005.

    Article  PubMed  Google Scholar 

  • He, X., S. McGee, J. E. Coad, F. Schmidlin, P. A. Iaizzo, D. J. Swanlund, S. Kluge, E. Rudie, and J. C. Bischof. Investigation of the thermal and tissue injury behaviour in microwave thermal therapy using a porcine kidney model. Int. J. Hyperthermia 20:567–593, 2004.

    Article  CAS  PubMed  Google Scholar 

  • He, X., E. Y. Park, A. Fowler, M. L. Yarmush, and M. Toner. Vitrification by ultra-fast cooling at a low concentration of cryoprotectants in a quartz micro-capillary: a study using murine embryonic stem cells. Cryobiology 56:223–232, 2008.

    Article  CAS  PubMed  Google Scholar 

  • He, X., W. F. Wolkers, J. H. Crowe, D. J. Swanlund, and J. C. Bischof. In situ thermal denaturation of proteins in dunning AT-1 prostate cancer cells: implication for hyperthermic cell injury. Ann. Biomed. Eng. 32:1384–1398, 2004.

    Article  PubMed  Google Scholar 

  • He, X. M., A. Fowler, and M. Toner. Water activity and mobility in solutions of glycerol and small molecular weight sugars: Implication for cryo- and lyopreservation. J. Appl. Phys. 100:074702, 2006 (074711 pp).

    Google Scholar 

  • Heng, B. C., L. L. Kuleshova, S. M. Bested, H. Liu, and T. Cao. The cryopreservation of human embryonic stem cells. Biotechnol. Appl. Biochem. 41:97–104, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Himmelblau, D. M. Applied Nonlinear Programming. New York: McGraw-Hill Inc., 1972.

    Google Scholar 

  • Hunt, C. J., D. E. Pegg, and S. E. Armitage. Optimising cryopreservation protocols for haematopoietic progenitor cells: a methodological approach for umbilical cord blood. Cryoletters 27:73–83, 2006.

    PubMed  Google Scholar 

  • Hunter, J., A. Bernard, B. Fuller, J. McGrath, and R. W. Shaw. Plasma membrane water permeabilities of human oocytes: the temperature dependence of water movement in individual cells. J. Cell. Physiol. 150:175–179, 1992.

    Article  CAS  PubMed  Google Scholar 

  • Hunter, J. E., A. Bernard, B. J. Fuller, J. J. McGrath, and R. W. Shaw. Measurements of the membrane water permeability (Lp) and its temperature dependence (activation energy) in human fresh and failed-to-fertilize oocytes and mouse oocyte. Cryobiology 29:240–249, 1992.

    Article  CAS  PubMed  Google Scholar 

  • Jain, J. K., and R. J. Paulson. Oocyte cryopreservation. Fertil. Steril. 86(Suppl 4):1037–1046, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Jeruss, J. S., and T. K. Woodruff. Preservation of fertility in patients with cancer. N. Engl. J. Med. 360:902–911, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Karlsson, J. O. M., E. G. Cravalho, and M. Toner. A model of diffusion-limited ice growth inside biological cells during freezing. J. Appl. Phys. 75:4442–4445, 1994.

    Article  Google Scholar 

  • Karlsson, J. O., A. I. Younis, A. W. Chan, K. G. Gould, and A. Eroglu. Permeability of the rhesus monkey oocyte membrane to water and common cryoprotectants. Mol. Reprod. Dev. 76:321–333, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Kleinhans, F. W., and P. Mazur. Determination of the water permeability (Lp) of mouse oocytes at −25 degrees C and its activation energy at subzero temperatures. Cryobiology 58:215–224, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Kouba, A. J., and C. K. Vance. Applied reproductive technologies and genetic resource banking for amphibian conservation. Reprod. Fertil. Dev. 21:719–737, 2009.

    Article  PubMed  Google Scholar 

  • Leibo, S. P. Water permeability and its activation energy of fertilized and unfertilized mouse ova. J. Membr. Biol. 53:179–188, 1980.

    Article  CAS  PubMed  Google Scholar 

  • Leibo, S. P., and N. Songsasen. Cryopreservation of gametes and embryos of non-domestic species. Theriogenology 57:303–326, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Levin, R. L., E. G. Cravalho, and C. E. Huggins. A membrane model describing the effect of temperature on the water conductivity of erythrocyte membranes at subzero temperatures. Cryobiology 13:415–429, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Litkouhi, B., D. Marlow, J. J. McGrath, and B. Fuller. The influence of cryopreservation on murine oocyte water permeability and osmotically inactive volume. Cryobiology 34:23–35, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Mandelbaum, J., J. Belaisch-Allart, A. M. Junca, J. M. Antoine, M. Plachot, S. Alvarez, M. O. Alnot, and J. Salat-Baroux. Cryopreservation in human assisted reproduction is now routine for embryos but remains a research procedure for oocytes. Hum. Reprod. 13(Suppl 3):161–174, 1998.

    PubMed  Google Scholar 

  • Manipalviratn, S., and A. Decherney. Clinical application of human oocyte cryopreservation. Rev. Recent Clin. Trials 3:104–110, 2008.

    Article  PubMed  Google Scholar 

  • Mathias, S. F., F. Franks, and K. Trafford. Nucleation and growth of ice in deeply undercooled erythrocytes. Cryobiology 21:123–132, 1984.

    Article  CAS  PubMed  Google Scholar 

  • Mazur, P. Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J. Gen. Physiol. 47:347–369, 1963.

    Article  CAS  PubMed  Google Scholar 

  • Mazur, P. The role of cell membranes in the freezing of yeast and other single cells. Ann. N. Y. Acad. Sci. 125:658–676, 1965.

    Article  CAS  PubMed  Google Scholar 

  • Mazur, P. Freezing of living cells: mechanisms and implications. Am. J. Physiol. 247:C125–142, 1984.

    CAS  PubMed  Google Scholar 

  • Mazur, P., S. P. Leibo, and G. E. Seidel, Jr. Cryopreservation of the germplasm of animals used in biological and medical research: importance, impact, status, and future directions. Biol. Reprod. 78:2–12, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Myers, S. P., R. E. Pitt, D. V. Lynch, and P. L. Steponkus. Characterization of intracellular ice formation in Drosophila melanogaster embryos. Cryobiology 26:472–484, 1989.

    Article  CAS  PubMed  Google Scholar 

  • Nagy, Z. P., C. C. Chang, D. B. Shapiro, D. P. Bernal, H. I. Kort, and G. Vajta. The efficacy and safety of human oocyte vitrification. Semin. Reprod. Med. 27:450–455, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Pedro, P. B., E. Yokoyama, S. E. Zhu, N. Yoshida, D. M. Valdez, Jr., M. Tanaka, K. Edashige, and M. Kasai. Permeability of mouse oocytes and embryos at various developmental stages to five cryoprotectants. J. Reprod. Dev. 51:235–246, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Porcu, E., and S. Venturoli. Progress with oocyte cryopreservation. Curr. Opin. Obstet. Gynecol. 18:273–279, 2006.

    Article  PubMed  Google Scholar 

  • Rall, W. F., and G. M. Fahy. Ice-free cryopreservation of mouse embryos at −196-degrees-C by vitrification. Nature 313:573–575, 1985.

    Article  CAS  PubMed  Google Scholar 

  • Ruffing, N. A., P. L. Steponkus, R. E. Pitt, and J. E. Parks. Osmometric behavior, hydraulic conductivity, and incidence of intracellular ice formation in bovine oocytes at different developmental stages. Cryobiology 30:562–580, 1993.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz, G. J., and K. R. Diller. Analysis of the water permeability of human granulocytes at subzero temperatures in the presence of extracellular ice. J. Biomech. Eng. 105:360–366, 1983.

    Article  CAS  PubMed  Google Scholar 

  • Toner, M. Nucleation of ice crystals inside biological cells. Adv. Low-Temp. Biol. 2:1–51, 1993.

    Google Scholar 

  • Toner, M., and E. G. Cravalho. Thermodynamics and kinetics of intracellular ice formation during freezing of biological cells. J. Appl. Phys. 67:1582–1593, 1990.

    Article  Google Scholar 

  • Toner, M., E. G. Cravalho, and D. R. Armant. Water transport and estimated transmembrane potential during freezing of mouse oocytes. J. Membr. Biol. 115:261–272, 1990.

    Article  CAS  PubMed  Google Scholar 

  • Toner, M., E. G. Cravalho, and M. Karel. Thermodynamics and kinetics of intracellular ice formation during freezing of biological cells. J. Appl. Phys. 67:1582–1593, 1990.

    Article  Google Scholar 

  • Toner, M., E. G. Cravalho, M. Karel, and D. R. Armant. Cryomicroscopic analysis of intracellular ice formation during freezing of mouse oocytes without cryoadditives. Cryobiology 28:55–71, 1991.

    Article  CAS  PubMed  Google Scholar 

  • Trounson, A., and L. Mohr. Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature 305:707–709, 1983.

    Article  CAS  PubMed  Google Scholar 

  • Vajta, G., and Z. P. Nagy. Are programmable freezers still needed in the embryo laboratory? Review on vitrification. Reprod. Biomed. Online 12:779–796, 2006.

    Article  PubMed  Google Scholar 

  • Veres, M., A. R. Duselis, A. Graft, M. J. Dewey, J. Crossland, P. B. Vrana, and G. Szalai. The biology and methodology of assisted reproduction in deer mice (Peromyscus maniculatus). Theriogenology 2010 (under review).

  • Yang, G., A. Zhang, L. X. Xu, and X. He. Modeling the cell-type dependence of diffusion-limited intracellular ice nucleation and growth during both vitrification and slow freezing. J. Appl. Phys. 105:114701–114711, 2009.

    Article  Google Scholar 

  • Yarmush, M. L., M. Toner, J. C. Dunn, A. Rotem, A. Hubel, and R. G. Tompkins. Hepatic tissue engineering. Development of critical technologies. Ann. N. Y. Acad. Sci. 665:238–252, 1992.

    Article  CAS  PubMed  Google Scholar 

  • Younis, A. I., M. Toner, D. F. Albertini, and J. D. Biggers. Cryobiology of non-human primate oocytes. Hum. Reprod. 11:156–165, 1996.

    CAS  PubMed  Google Scholar 

  • Zhang, W., G. Yang, A. Zhang, L. X. Xu, and X. He. Preferential vitrification of water in small alginate microcapsules significantly augments cell cryopreservation by vitrification. Biomed. Microdevices 12:89–96, 2010.

    Article  PubMed  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4