A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-010-0152-x below:

A Wireless System for Monitoring Transcranial Motor Evoked Potentials

Abstract

Intraoperative neurophysiological monitoring (IONM) is commonly used as an attempt to minimize neurological morbidity from operative manipulations. The goal of IONM is to identify changes in the central and peripheral nervous system function prior to irreversible damage. Intraoperative monitoring also has been effective in localizing anatomical structures, including peripheral nerves and sensorimotor cortex, which helps guide the surgeon during dissection. As part of IONM, transcranial motor evoked potentials (TcMEPs), and somatosensory evoked potentials (SSEPs) are routinely monitored. However, current wired systems are cumbersome as the wires contribute to the crowded conditions in the operating room and in doing so not only it limits the maneuverability of the surgeon and assistants, but also places certain demand in the total anesthesia required during surgery, due to setup preoperative time needed for proper electrode placement, due to the number and length of the wires, and critical identification of the lead wires needed for stimulation and recording. To address these limitations, we have developed a wireless TcMEP IONM system as a first step toward a multimodality IONM system. Bench-top and animal experiments in rodents demonstrated that the wireless method reproduced with high fidelity, and even increased the frequency bandwidth of the TcMEP signals, compared to wired systems. This wireless system will reduce the preoperative time required for IONM setup, add convenience for surgical staff, and reduce wire-related risks for patients during the operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article Subscribe and save

Springer+ Basic

€34.99 /Month

Subscribe now Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others Explore related subjectsDiscover the latest articles and news from researchers in related subjects, suggested using machine learning. References
  1. Ativanichayaphong, T., J. W. He, C. E. Hagains, Y. B. Peng, and J. C. Chiao. A combined wireless neural stimulating and recording system for study of pain processing. J. Neurosci. Methods 170:25–34, 2008.

    Article  PubMed  Google Scholar 

  2. Chae, M. S., Z. Yang, M. R. Yuce, L. Hoang, and W. Liu. A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter. IEEE Trans. Neural Syst. Rehabil. Eng. 17:312–321, 2009.

    Article  PubMed  Google Scholar 

  3. Chimeno, F., and P. Areny. A comprehensive model for power line interference in biopotential measurements. IEEE Trans. Instr. Meas. 49:535–540, 2000.

    Article  Google Scholar 

  4. Deletis, V., and F. Sala. Intraoperative neurophysiological monitoring of the spinal cord during spinal cord and spine surgery: a review focus on the corticospinal tracts. Clin. Neurophysiol. 119:248–264, 2008.

    Article  PubMed  Google Scholar 

  5. Di Lazzaro, V., A. Oliviero, F. Pilato, E. Saturno, M. Dileone, P. Mazzone, A. Insola, P. A. Tonali, and J. C. Rothwell. The physiological basis of transcranial motor cortex stimulation in conscious humans. Clin. Neurophysiol. 115:255–266, 2004.

    Article  CAS  PubMed  Google Scholar 

  6. Gonzalez, A. A., D. Jeyanandarajan, C. Hansen, G. Zada, and P. C. Hsieh. Intraoperative neurophysiological monitoring during spine surgery: a review. Neurosurg. Focus 27:E6, 2009.

    Article  PubMed  Google Scholar 

  7. Hu, Y., K. D. Luk, W. W. Lu, A. Holmes, and J. C. Leong. Prevention of spinal cord injury with time-frequency analysis of evoked potentials: an experimental study. J. Neurol. Neurosurg. Psychiatry 71:732–740, 2001.

    Article  CAS  PubMed  Google Scholar 

  8. Journee, H. L., H. E. Polak, and M. De Kleuver. Conditioning stimulation techniques for enhancement of transcranially elicited evoked motor responses. Neurophysiol. Clin. 37:423–430, 2007.

    Article  PubMed  Google Scholar 

  9. Jovanov, E., A. Milenkovic, C. Otto, and P. C. de Groen. A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation. J. Neuroeng. Rehabil. 2:6–10, 2005.

    Article  PubMed  Google Scholar 

  10. Kothbauer, K., V. Deletis, and F. J. Epstein. Intraoperative spinal cord monitoring for intramedullary surgery: an essential adjunct. Pediatr. Neurosurg. 26:247–254, 1997.

    Article  CAS  PubMed  Google Scholar 

  11. Langeloo, D. D., A. Lelivelt, H. L. Journee, R. Slappendel, and M. de Kleuver. Transcranial electrical motor-evoked potential monitoring during surgery for spinal deformity: a study of 145 patients. Spine (Phila Pa 1976) 28:1043–1050, 2003.

    Google Scholar 

  12. Langeloo, D. D., H. L. Journee, M. de Kleuver, and J. A. Grotenhuis. Criteria for transcranial electrical motor evoked potential monitoring during spinal deformity surgery: a review and discussion of the literature. Neurophysiol. Clin. 37:431–439, 2007.

    Article  PubMed  Google Scholar 

  13. Lapray, D., J. Bergeler, E. Dupont, O. Thews, and H. J. Luhmann. A novel miniature telemetric system for recording EEG activity in freely moving rats. J. Neurosci. Methods 168:119–126, 2008.

    Article  PubMed  Google Scholar 

  14. Lin, C. T., L. W. Ko, J. C. Chiou, J. R. Duann, R. S. Huang, S. F. Liang, T. W. Chiu, and T. P. Jung. Noninvasive neural prostheses using mobile and wireless EEG. Proc. IEEE 96:1167–1183, 2008.

    Article  Google Scholar 

  15. Macdonald, D. B. Intraoperative motor evoked potential monitoring: overview and update. J. Clin. Monit. Comput. 20:347–377, 2006.

    Article  PubMed  Google Scholar 

  16. Mahfouz, M. R., M. J. Kuhn, G. To, and A. E. Fathy. Integration of UWB and wireless pressure mapping in surgical navigation. IEEE Trans. Microwave Theory Technol. 57:2550–2564, 2009.

    Article  Google Scholar 

  17. McManus, C. D., K. D. Neubert, and E. Cramer. Characterization and elimination of AC noise in electrocardiograms: a comparison of digital filtering methods. Comput. Biomed. Res. 26:48–67, 1993.

    Article  CAS  PubMed  Google Scholar 

  18. Quinones-Hinojosa, A., R. Lyon, G. Zada, K. R. Lamborn, N. Gupta, A. T. Parsa, M. W. McDermott, and P. R. Weinstein. Changes in transcranial motor evoked potentials during intramedullary spinal cord tumor resection correlate with postoperative motor function. Neurosurgery 56:982–993, 2005.

    PubMed  Google Scholar 

  19. Sodagar, A. M., K. D. Wise, and K. Najafi. A fully integrated mixed-signal neural processor for implantable multichannel cortical recording. IEEE Trans. Biomed. Eng. 54:1075–1088, 2007.

    Article  PubMed  Google Scholar 

  20. Tinazzi, M., M. Valeriani, G. Moretto, T. Rosso, A. Nicolato, A. Fiaschi, and S. M. Aglioti. Plastic interactions between hand and face cortical representations in patients with trigeminal neuralgia: a somatosensory-evoked potentials study. Neuroscience 127:769–776, 2004.

    Article  CAS  PubMed  Google Scholar 

  21. Vehkaoja, A. T., J. A. Verho, M. M. Puurtinen, N. Nojd, J. O. Lekkala, and J. A. Hyttinen. Wireless head cap for EOG and facial EMG measurements. Conf. Proc. IEEE Eng. Med. Biol. Soc. 6:5865–5868, 2005.

    PubMed  Google Scholar 

  22. Wilder, R. T., R. P. Flick, J. Sprung, S. K. Katusic, W. J. Barbaresi, C. Mickelson, S. J. Gleich, D. R. Schroeder, A. L. Weaver, and D. O. Warner. Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology 110:796–804, 2009.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Texas StarPlus Award and Intel Corp. The authors greatly appreciate the valuable support and contributions of Dr. Nancy Clegg, Patricia Rampy, Elizabeth Van Allen, Dahlia Reid, and the research staff in the Neurology and Neurophysiology departments at Texas Scottish Rite Hospital for Children in Dallas, Texas.

Author information Authors and Affiliations
  1. Department of Bioengineering, University of Texas at Arlington, 701 S. Nedderman Dr., Arlington, TX, 76019, USA

    Aydin Farajidavar, Jennifer L. Seifert, Jennifer E. S. Bell, Mario I. Romero & J.-C. Chiao

  2. Department of Electrical Engineering, University of Texas at Arlington, 701 S. Nedderman Dr., Arlington, TX, 76019, USA

    Young-Sik Seo & J.-C. Chiao

  3. Department of Neurology, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA

    Mauricio R. Delgado & Steven Sparagana

  4. NH 143, 416 Yates St., Arlington, TX, 76019-0016, USA

    Aydin Farajidavar

Authors
  1. Aydin Farajidavar
  2. Jennifer L. Seifert
  3. Jennifer E. S. Bell
  4. Young-Sik Seo
  5. Mauricio R. Delgado
  6. Steven Sparagana
  7. Mario I. Romero
  8. J.-C. Chiao
Corresponding author

Correspondence to Aydin Farajidavar.

Additional information

Associate Editor Jing Bai oversaw the review of this article.

About this article Cite this article

Farajidavar, A., Seifert, J.L., Bell, J.E.S. et al. A Wireless System for Monitoring Transcranial Motor Evoked Potentials. Ann Biomed Eng 39, 517–523 (2011). https://doi.org/10.1007/s10439-010-0152-x

Download citation

Keywords

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4