Baughman, R. H., A. A. Zakhidov, and W. A. de Heer. Carbon nanotubes—the route toward applications. Science 297(5582):787–792, 2002.
Bianco, A., and M. Prato. Can carbon nanotubes be considered useful tools for biological applications? Adv. Mater. 15(20):1765–1766, 2003.
Bottini, M., S. Bruckner, K. Nika, N. Bottini, S. Bellucci, A. Magrini, A. Bergamaschi, and T. Mustelin. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol. Lett. 160(2):121–126, 2006.
Chang, J. S., K. L. Chang, D. F. Hwang, and Z. L. Kong. In vitro cytotoxicitiy of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line. Environ. Sci. Technol. 41(6):2064–2068, 2007.
Cheng, C., K. H. Muller, K. K. Koziol, J. N. Skepper, P. A. Midgley, M. E. Welland, and A. E. Porter. Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells. Biomaterials 30(25):4152–4160, 2009.
Colognato, H., and P. D. Yurchenco. Form and function: the laminin family of heterotrimers. Dev. Dyn. 218(2):213–234, 2000.
Cui, D. X., F. R. Tian, C. S. Ozkan, M. Wang, and H. J. Gao. Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol. Lett. 155(1):73–85, 2005.
Ding, L., J. Stilwell, T. Zhang, O. Elboudwarej, H. Jiang, J. P. Selegue, P. A. Cooke, J. W. Gray, and F. F. Chen. Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett. 5(12):2448–2464, 2005.
Even-Ram, S., and K. M. Yamada. Cell migration in 3D matrix. Curr. Opin. Cell. Biol. 17(5):524–532, 2005.
Fujimoto, L. M., R. Roth, J. E. Heuser, and S. L. Schmid. Actin assembly plays a variable, but not obligatory role in receptor-mediated endocytosis in mammalian cells. Traffic 1(2):161–171, 2000.
Gao, H. J., Y. Kong, and D. X. Cui. Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett. 3(4):471–473, 2003.
Gotlieb, A. I. The endothelial cytoskeleton: organization in normal and regenerating endothelium. Toxicol. Pathol. 18(4 Pt 1):603–617, 1990.
Gupta, A. K., M. Gupta, S. J. Yarwood, and A. S. Curtis. Effect of cellular uptake of gelatin nanoparticles on adhesion, morphology and cytoskeleton organisation of human fibroblasts. J. Control Rel. 95(2):197–207, 2004.
Hafner, J. H., C. L. Cheung, A. T. Woolley, and C. M. Lieber. Structural and functional imaging with carbon nanotube AFM probes. Prog. Biophys. Mol. Biol. 77(1):73–110, 2001.
Hu, H., Y. Ni, S. K. Mandal, V. Montana, B. Zhao, R. C. Haddon, and V. Parpura. Polyethyleneimine functionalized single-walled carbon nanotubes as a substrate for neuronal growth. J. Phys. Chem. B 109(10):4285–4289, 2005.
Iijima, S. Helical microtubules of graphitic carbon. Nature 354:56–58, 1991.
Jia, G., H. F. Wang, L. Yan, X. Wang, R. J. Pei, T. Yan, Y. L. Zhao, and X. B. Guo. Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ. Sci. Technol. 39(5):1378–1383, 2005.
Kagan, V. E., Y. Y. Tyurina, V. A. Tyurin, N. V. Konduru, A. I. Potapovich, A. N. Osipov, E. R. Kisin, D. Schwegler-Berry, R. Mercer, V. Castranova, and A. A. Shvedova. Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron. Toxicol. Lett. 165(1):88–100, 2006.
Kaiser, J. P., P. Wick, P. Manser, P. Spohn, and A. Bruinink. Single walled carbon nanotubes (SWCNT) affect cell physiology and cell architecture. J. Mater. Sci. 19(4):1523–1527, 2008.
Kaiser, J. P., H. F. Krug, and P. Wick. Nanomaterial cell interactions: how do carbon nanotubes affect cell physiology? Nanomedicine 4(1):57–63, 2009.
Kam, N. W., and H. Dai. Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J. Am. Chem. Soc. 127(16):6021–6026, 2005.
Kisin, E. R., A. R. Murray, M. J. Keane, X. C. Shi, D. Schwegler-Berry, O. Gorelik, S. Arepalli, V. Castranova, W. E. Wallace, V. E. Kagan, and A. A. Shvedova. Single-walled carbon nanotubes: geno- and cytotoxic effects in lung fibroblast V79 cells. J. Toxicol. Environ. Health A 70(24):2071–2079, 2007.
Kostarelos, K., L. Lacerda, G. Pastorin, W. Wu, S. Wieckowski, J. Luangsivilay, S. Godefroy, D. Pantarotto, J. P. Briand, S. Muller, M. Prato, and A. Bianco. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2(2):108–113, 2007.
Laaksonen, T., H. Santos, H. Vihola, J. Salonen, J. Riikonen, T. Heikkila, L. Peltonen, N. Kurnar, D. Y. Murzin, V. P. Lehto, and J. Hirvonent. Failure of MTT as a toxicity testing agent for mesoporous silicon microparticles. Chem. Res. Toxicol. 20(12):1913–1918, 2007.
Li, Y., X. B. Zhang, X. Y. Tao, J. M. Xu, W. Z. Huang, J. H. Luo, Z. Q. Luo, T. Li, F. Liu, Y. Bao, and H. J. Geise. Mass production of high-quality multi-walled carbon nanotube bundles on a Ni/Mo/MgO catalyst. Carbon 43(2):295–301, 2005.
Manna, S. K., S. Sarkar, J. Barr, K. Wise, E. V. Barrera, O. Jejelowo, A. C. Rice-Ficht, and G. T. Ramesh. Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappaB in human keratinocytes. Nano Lett. 5(9):1676–1684, 2005.
Mao, Z. W., B. Wang, L. Ma, C. Y. Gao, and J. C. Shen. The influence of polycaprolactone coating on the internalization and cytotoxicity of gold nanoparticles. Nanomedicine 3(3):215–223, 2007.
Monteiro-Riviere, N. A., and A. O. Inman. Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon 44(6):1070–1078, 2006.
Monteiro-Riviere, N. A., A. O. Inman, Y. Y. Wang, and R. J. Nemanich. Surfactant effects on carbon nanotube interactions with human keratinocytes. Nanomedicine 1(4):293–299, 2005.
Oberlin, A., M. Endo, and T. Koyama. Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth 32(3):335–349, 1976.
Oh, J. M., S. J. Choi, S. T. Kim, and J. H. Choy. Cellular uptake mechanism of an inorganic nanovehicle and its drug conjugates: enhanced efficacy due to clathrin-mediated endocytosis. Bioconjug. Chem. 17(6):1411–1417, 2006.
Pan, Z., W. Lee, L. Slutsky, R. A. Clark, N. Pernodet, and M. H. Rafailovich. Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells. Small 5(4):511–520, 2009.
Pankov, R., and K. M. Yamada. Fibronectin at a glance. J. Cell. Sci. 115(20):3861–3863, 2002.
Pantarotto, D., R. Singh, D. McCarthy, M. Erhardt, J. P. Briand, M. Prato, K. Kostarelos, and A. Bianco. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Ed. 43(39):5242–5246, 2004.
Patlolla, A., B. Patlolla, and P. Tchounwou. Evaluation of cell viability, DNA damage, and cell death in normal human dermal fibroblast cells induced by functionalized multiwalled carbon nanotube. Mol. Cell Biochem. 331:207–214, 2009.
Pernodet, N., X. Fang, Y. Sun, A. Bakhtina, A. Ramakrishnan, J. Sokolov, A. Ulman, and M. Rafailovich. Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small 2(6):766–773, 2006.
Raja, P. M., J. Connolley, G. P. Ganesan, L. Ci, P. M. Ajayan, O. Nalamasu, and D. M. Thompson. Impact of carbon nanotube exposure, dosage and aggregation on smooth muscle cells. Toxicol. Lett. 169(1):51–63, 2007.
Reddy, A. R., Y. N. Reddy, D. R. Krishna, and V. Himabindu. Multi wall carbon nanotubes induce oxidative stress and cytotoxicity in human embryonic kidney (HEK293) cells. Toxicology 272(1–3):11–16, 2010.
Ridley, A. J., M. A. Schwartz, K. Burridge, R. A. Firtel, M. H. Ginsberg, G. Borisy, J. T. Parsons, and A. R. Horwitz. Cell migration: integrating signals from front to back. Science 302(5651):1704–1709, 2003.
Sayes, C. M., F. Liang, J. L. Hudson, J. Mendez, W. Guo, J. M. Beach, V. C. Moore, C. D. Doyle, J. L. West, W. E. Billups, K. D. Ausman, and V. L. Colvin. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol. Lett. 161(2):135–142, 2006.
Schneider, M., F. Stracke, S. Hansen, and U. F. Schaefer. Nanoparticles and their interactions with the dermal barrier. Dermatoendocrinology 1(4):197–206, 2009.
Shi, H., Y. Huang, H. Zhou, X. Song, S. Yuan, Y. Fu, and Y. Luo. Nucleolin is a receptor that mediates antiangiogenic and antitumor activity of endostatin. Blood 110(8):2899–2906, 2007.
Small, J. V., T. Stradal, E. Vignal, and K. Rottner. The lamellipodium: where motility begins. Trends Cell Biol. 12(3):112–120, 2002.
Stadelmann, W. K., A. G. Digenis, and G. R. Tobin. Physiology and healing dynamics of chronic cutaneous wounds. Am. J. Surg. 176(2A Suppl):26S–38S, 1998.
Tabet, L., C. Bussy, N. Amara, A. Setyan, A. Grodet, M. J. Rossi, J. C. Pairon, J. Boczkowski, and S. Lanone. Adverse effects of industrial multiwalled carbon nanotubes on human pulmonary cells. J. Toxicol. Environ. Health A 72(2):60–73, 2009.
Tian, F. R., D. X. Cui, H. Schwarz, G. G. Estrada, and H. Kobayashi. Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol. In Vitro 20(7):1202–1212, 2006.
Varedi, M., A. Ghahary, P. G. Scott, and E. E. Tredget. Cytoskeleton regulates expression of genes for transforming growth factor-beta 1 and extracellular matrix proteins in dermal fibroblasts. J. Cell Physiol. 172(2):192–199, 1997.
Wehrle-Haller, B., and B. A. Imhof. Actin, microtubules and focal adhesion dynamics during cell migration. Int. J. Biochem. Cell Biol. 35(1):39–50, 2003.
Xu, L. H., X. Yang, R. J. Craven, and W. G. Cance. The COOH-terminal domain of the focal adhesion kinase induces loss of adhesion and cell death in human tumor cells. Cell Growth Differ. 9(12):999–1005, 1998.
Zhao, B., H. Hu, K. M. Swadhin, and R. C. Haddon. A bone mimic based on the self-assembly of hydroxyapatite on chemically functionalized single-walled carbon nanotubes. Chem. Mater. 17(12):3235–3241, 2005.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4