A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-010-0148-6 below:

Bioreactors for Development of Tissue Engineered Heart Valves

References
  1. American Heart Association Heart Disease and Stroke Statistic 2009 Update. http://www.americanheart.org/presenter.jhtml?identifier=3037327.

  2. American Heart Association Heart Disease and Stroke Statistics—2005 Update. http://www.americanheart.org/downloadable/heart/1105390918119HDSStats2005Update.pdf.

  3. Bader, A., G. Steinhoff, K. Strobl, T. Schilling, G. Brandes, H. Mertsching, D. Tsikas, J. Froelich, and A. Haverich. Engineering of human vascular aortic tissue based on a xenogeneic starter matrix. Transplantation 70:7–14, 2000.

    CAS  PubMed  Google Scholar 

  4. Balachandran, K., P. Sucosky, H. Jo, and A. P. Yoganathan. Elevated cyclic stretch alters matrix remodeling in aortic valve cusps: implications for degenerative aortic valve disease. Am. J. Physiol. Heart Circ. Physiol. 296:H756–H764, 2009.

    Article  CAS  PubMed  Google Scholar 

  5. Barnett, S. D., and N. Ad. Surgery for aortic and mitral valve disease in the United States: A trend of change in surgical practice between 1998 and 2005. J. Thorac. Cardiovasc. Surg. 137:1422–1429, 2009.

    Article  PubMed  Google Scholar 

  6. Butcher, J. T., and R. Nerem. Valvular endothelial cells regulate the phenotype of interstitial cells in co-culture: effects of steady shear stress. Tissue Eng. 12:905–915, 2006.

    Article  CAS  PubMed  Google Scholar 

  7. Butcher, J. T., A. M. Penrod, A. J. García, and R. M. Nerem. Unique morphology and focal adhesion development of valvular endothelial cells in static and fluid flow environments. Arterioscler. Thromb. Vasc. Biol. 24:1429–1434, 2004.

    Article  CAS  PubMed  Google Scholar 

  8. Butcher, J. T., S. Tressel, T. Johnson, D. Turner, G. Sorescu, H. Jo, and R. M. Nerem. Profiles of valvular and vascular endothelial cells reveal phenotypic differences: influence of shear stress. Arterioscler. Thromb. Vasc. Biol. 26:69–77, 2006.

    Article  CAS  PubMed  Google Scholar 

  9. Cebotari, S., A. Lichtenberg, I. Tudorache, A. Hilfiker, H. Mertsching, R. Leyh, T. Breymann, K. Kallenbach, L. Maniuc, A. Batrinac, O. Repin, O. Maliga, A. Ciubotaru, and A. Haverich. Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation 114:1132–1137, 2006.

    Article  Google Scholar 

  10. Dohmen, P. M., A. Lembcke, H. Hotz, D. Kivelitz, and W. F. Konertz. Ross operation with a tissue engineered heart valve. Ann. Thorac. Surg. 74:1438–1442, 2002.

    Article  PubMed  Google Scholar 

  11. Dohmen, P. M., S. Ozaki, R. Nitsch, J. Yperman, W. Flameng, and W. Konertz. A tissue engineered heart valve implanted in a juvenile sheep model. Med. Sci. Monit. 9:BR137–BR144, 2003.

    Google Scholar 

  12. Dumont, K., J. Yperman, E. Verbeken, P. Segers, B. Meuris, S. Vandenberghe, W. Flameng, and P. R. Verdonck. Design of a new pulsatile bioreactor for tissue engineered aortic heart valve formation. Artif. Organs 26:710–714, 2002.

    Article  PubMed  Google Scholar 

  13. Engelmayr, G. C., D. K. Hildebrand, F. W. Sutherland, J. E. Mayer, and M. S. Sacks. A novel bioreactor for the dynamic flexural stimulation of tissue engineered heart valve biomaterials. Biomaterials 24:2523–2532, 2003.

    Article  CAS  PubMed  Google Scholar 

  14. Engelmayr, G. C., G. C. Engelmayr, Jr., E. Rabkin, F. W. Sutherland, F. J. Schoen, J. E. Mayer, Jr., and M. S. Sacks. The independent role of cyclic flexure in the early in vitro development of an engineered heart valve tissue. Biomaterials 26:175–187, 2005.

    Article  CAS  PubMed  Google Scholar 

  15. Engelmayr, Jr., G. C., V. L. Sales, J. E. Mayer, Jr., and M. S. Sacks. Cyclic flexure and laminar flow synergistically accelerate mesenchymal stem cell-mediated engineered tissue formation: implications for engineered heart valve tissues. Biomaterials 27:6083–6095, 2006.

    Article  CAS  PubMed  Google Scholar 

  16. Engelmayr, Jr., G. C., L. Soletti, S. C. Vigmostad, S. G. Budilarto, W. J. Federspiel, K. B. Chandran, D. A. Vorp, and M. S. Sacks. A novel flex-stretch-flow bioreactor for the study of engineered heart valve tissue mechanobiology. Ann. Biomed. Eng. 36(5):700–712, 2008.

    Article  PubMed  Google Scholar 

  17. Grauss, R. W., M. G. Hazekamp, F. Oppenhuizen, C. J. van Munsteren, A. C. Gittenberger-de Groot, and M. C. DeRuiter. Histological evaluation of decellularised porcine aortic valves: matrix changes due to different decellularisation methods. Eur. J. Cardiothorac. Surg. 27:566–571, 2005.

    Article  PubMed  Google Scholar 

  18. Gupta, V., J. A. Werdenberg, B. D. Lawrence, J. S. Mendez, E. H. Stephens, and K. J. Grande-Allen. Reversible secretion of glycosaminoglycans and proteoglycans by cyclically stretched valvular cells in 3D culture. Ann. Biomed. Eng. 36(7):1092–1103, 2008.

    Article  PubMed  Google Scholar 

  19. Hilbert, S. L., R. Yanagida, J. Souza, L. Wolfinbarger, A. L. Jones, P. Krueger, G. Stearns, A. Bert, and R. A. Hopkins. Prototype anionic detergent technique used to decellularize allograft valve conduits evaluated in the right ventricular outflow tract in sheep. J. Heart Valve Dis. 13:831–840, 2004.

    PubMed  Google Scholar 

  20. Hildebrand, D. K., Z. J. Wu, J. E. Mayer, and M. S. Sacks. Design and hydrodynamic evaluation of a novel pulsatile bioreactor for biologically active heart valves. Ann. Biomed. Eng. 32:1039–1049, 2004.

    Article  PubMed  Google Scholar 

  21. Hoerstrup, S. P., R. Sodian, S. Daebritz, J. Wang, E. A. Bacha, D. P. Martin, A. M. Moran, K. J. Gulersian, J. S. Sperling, K. Sunjay, J. P. Vacanti, F. J. Schoen, and J. E. Mayer. Functional living trileaflet heart valves grown in vitro. Circulation 102:44–49, 2000.

    Google Scholar 

  22. Hoerstrup, S. P., R. Sodian, J. S. Sperling, J. P. Vacanti, and J. E. Mayer. New pulsatile bioreactor for in vitro formation of tissue engineered heart valves. Tissue Eng. 6:75–79, 2000.

    Article  CAS  PubMed  Google Scholar 

  23. Hoerstrup, S. P., R. Sodian, S. Daebritz, J. Wang, E. A. Bacha, D. P. Martin, A. M. Moran, K. J. Gulerserian, J. S. Sperling, S. Kashual, J. P. Vacanti, F. J. Schoen, and J. E. Mayer. Functional living trileaflet heart valves grown in vivo. Circulation 102(19 Suppl 3):44–49, 2000.

    Google Scholar 

  24. Jockenhoevel, S., G. Zund, S. P. Hoerstrup, A. Schnell, and M. Turina. Cardiovascular tissue engineering: a new laminar flow chamber for in vitro improvement of mechanical tissue properties. ASAIO J. 48:8–11, 2002.

    Article  PubMed  Google Scholar 

  25. Karim, N., K. Golz, and A. Bader. The cardiovascular tissue-reactor: a novel device for the engineering of heart valves. Artif. Organs 30:809–814, 2006.

    Article  CAS  PubMed  Google Scholar 

  26. Kim, W. G., and J. H. Huh. Time related histopathologic changes of acellularized xenogenic pulmonary valved conduits. ASAIO J. 50:601–605, 2004.

    Article  PubMed  Google Scholar 

  27. Kortsmit, J., M. C. M. Rutten, M. W. Wijlaars, and F. P. T. Baaijens. Deformation-controlled load application in heart valve tissue engineering. Tissue Eng.: Part C 15(4):707–716, 2009.

    Google Scholar 

  28. Ku, C. H., P. H. Johnson, P. Batten, P. Sarathchandra, R. C. Chambers, P. M. Taylor, M. H. Yacoub, and A. H. Chester. Collagen synthesis by mesenchymal stem cells and aortic valve interstitial cells in response to mechanical stretch. Cardiovasc. Res. 71(3):548–556, 2006.

    Article  CAS  PubMed  Google Scholar 

  29. Leyh, R. G., M. Wilhelmi, T. Walles, K. Kallenbach, P. Rebe, A. Oberbeck, T. Herden, A. Haverich, and H. Mertsching. Acellularized porcine heart valve scaffolds for heart valve tissue engineering and the risk of cross-species transmission of porcine endogenous retrovirus. J. Thorac. Cardiovasc. Surg. 126:1000–1004, 2003.

    Article  CAS  PubMed  Google Scholar 

  30. Lichtenberg, A., I. Tudorache, S. Cebotari, S. Ringes-Lichtenberg, G. Sturz, K. Hoeffler, C. Hurscheler, G. Brandes, A. Hilfiker, and A. Haverich. In vitro re-endothelialization of detergent decellularized heart valves under simulated physiological dynamic conditions. Biomaterials 27:4221–4229, 2006.

    Article  CAS  PubMed  Google Scholar 

  31. Lyengar, A. K. S., H. Sugimoto, D. B. Smith, and M. S. Sacks. In vitro quantification of bioprosthetic heart valve leaflet motion using structured light projection. Ann. Biomed. Eng. 29:963–973, 2001.

    Article  Google Scholar 

  32. Merryman, W. D., H. D. Lukoff, R. A. Long, G. C. Engelmayr, Jr., R. A. Hopkins, and M. S. Sacks. Synergistic effects of cyclic tension and transforming growth factor-Β1 on the aortic valve myofibroblast. Cardiovasc. Pathol. 16(5):268–276, 2007.

    Article  CAS  PubMed  Google Scholar 

  33. Mol, A., N. J. Driessen, M. C. Rutten, S. P. Hoerstrup, C. V. Bouten, and F. P. Baaijens. Tissue engineering of human heart valve leaflets: a novel bioreactor for a strain-based conditioning approach. Ann. Biomed. Eng. 33:1778–1788, 2005.

    Article  PubMed  Google Scholar 

  34. Schenke-Layland, K., F. Opitz, M. Gross, C. Doring, K. J. Halbhuber, F. Schirrmeister, T. Wahlers, and U. A. Stock. Complete dynamic repopulation of decellularized heart valves by application of defined physical signals-an in vitro study. Cardiovasc. Res. 60:497–509, 2003.

    Article  CAS  PubMed  Google Scholar 

  35. Society of Thoracic Surgeons National Cardiac Surgery Database. Available at: http://www.sts.org/documents/pdf/STS-ExecutiveSummaryFall2005.pdf. November 2005.

  36. Sutherland, F. W., T. E. Perry, Y. Yu, M. C. Sherwood, E. Rabkin, Y. Masuda, G. A. Garcia, D. L. McLellan, G. C. Engelmayr, Jr., M. S. Sacks, F. J. Schoen, and J. E. Mayer, Jr. From stem cells to viable autologous semilunar heart valve. Circulation 111:2783–2791, 2005.

    Article  PubMed  Google Scholar 

  37. Syedain, Z. H., and R. T. Tranquillo. Controlled cyclic stretch bioreactor for tissue- engineered heart valves. Biomaterials 30(25):4078–4084, 2009.

    Article  CAS  PubMed  Google Scholar 

  38. Vesely, I. Heart valve tissue engineering. Circ. Res. 97:743–755, 2005.

    Article  CAS  PubMed  Google Scholar 

  39. Vesey, J. M., and C. M. Otto. Complications of prosthetic heart valves. Curr. Cardiol. Rep. 6:106–111, 2004.

    Article  PubMed  Google Scholar 

  40. Weston, M. W., and A. P. Yoganathan. Biosynthetic activity in heart valve leaflets in response to in vitro flow environments. Ann. Biomed. Eng. 29:752–763, 2001.

    Article  CAS  PubMed  Google Scholar 

  41. Weston, M. W., D. V. LaBorde, and A. P. Yoganathan. Estimation of the shear stress on the aortic valve leaflet. Ann. Biomed. Eng. 27:572–579, 1999.

    Article  CAS  PubMed  Google Scholar 

  42. Weyman, A. E. Principles and Practices of Echocardiography. Philadelphia: Lea & Febiger, 1994.

    Google Scholar 

  43. Zeltinger, J., L. K. Landeen, H. G. Alexander, I. D. Kidd, and B. Sibanda. Development and characterization of tissue-engineered aortic valves. Tissue Eng. 7:9–22, 2001.

    Article  CAS  PubMed  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4