A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-010-0147-7 below:

Modeling of Hemodialysis Operation | Annals of Biomedical Engineering

References
  1. Abaci, H. E. Modeling of Hemodialysis Operation. MSc Thesis, Izmir Institute of Technology, 2008, pp. 48–50.

  2. Bosch, T., B. Schmidt, W. Samtleben, and H. J. Gurland. Effect of protein adsorption on diffusive and convective transport through polysulfone membranes. Contrib. Nephrol. 46:14–22, 1985.

    CAS  PubMed  Google Scholar 

  3. Bungay, P. M., and H. Brenner. The motion of a closely fitting sphere in a fluid filled tube. Int. J. Multiphase Flow 1:25–56, 1973.

    Article  Google Scholar 

  4. Cantor, R. C., and P. R. Schimmel. Biophysical Chemistry. Part II—Techniques for the Study of Biological Structure and Function. New York: W.H. Freeman and Company, 1980.

    Google Scholar 

  5. Chang, Y. L., and C. J. Lee. Solute transport characteristics in hemodiafiltration. J. Membr. Sci. 39:99–111, 1988.

    Article  CAS  Google Scholar 

  6. Clark, W. R., J. K. Leypoldt, L. W. Henderson, B. A. Mueller, M. K. Scott, and E. F. Vonesh. Quantifying the effect of changes in the hemodialysis prescription on effective solute removal with a mathematical model. J. Am. Soc. Nephrol. 10:601–609, 1999.

    CAS  PubMed  Google Scholar 

  7. Dahuron, L., and E. L. Cussler. Protein extraction with hollow fibres. AIChE J. 34(1):130–136, 1988.

    Article  CAS  Google Scholar 

  8. Deen, W. M. Hindered transport of large molecules in liquidfilled pores. AIChE J. 33:1409, 1987.

    Article  CAS  Google Scholar 

  9. Eloot, S. Experimental and Numerical Modeling of Dialysis. Doctorate Thesis. Ghent University, 2005.

  10. Gachon, A. M. F., J. Mallet, A. Tridon, and P. Deteix. Analysis of proteins eluted from hemodialysis membranes. J. Biomater. Sci. Polym. 2:263–276, 1991.

    Article  CAS  Google Scholar 

  11. Gast, K., H. Damaschun, R. Misselwitz, M. M. Frohne, D. Zirwer, and G. Damaschun. Compactness of protein molten globules: temperature-induced structural changes of the apomyoglobin folding intermediate. Eur. Biophys. J. 23:297, 1994.

    Article  CAS  PubMed  Google Scholar 

  12. Giddings, J. C., E. Kucera, C. P. Russell, and M. N. Myers. Statistical theory for the equilibrium distribution of rigid molecules in inert porous networks: exclusion chromatography. J. Phys. Chem. 72:4397–4408, 1968.

    Article  CAS  Google Scholar 

  13. Hosoya, N., and K. Sakai. Backdiffusion rather than backfiltration enhances endotoxin transport through highly permeable dialysis membranes. Trans. ASAIO 36:311–313, 1990.

    Google Scholar 

  14. Imholz, A. L. T., O. C. M. Koomen, D. O. Struijk, L. Arisz, and R. T. Krediet. Effect of increased intraperitoneal pressure on fluid and solute transport during CAPD. Kidney Int. 44:1078–1085, 1993.

    Article  CAS  PubMed  Google Scholar 

  15. Incropera, F. P., and D. P. DeWitt. Fundamentals of Heat and Mass Transfer. New York: Wiley, 2002.

    Google Scholar 

  16. Jaffrin, M. Y., L. H. Ding, and J. M. Laurent. Simultaneous convective and diffusive mass transfer in a hemodialyser. J. Biomech. Eng. 112:212–219, 1990.

    Article  CAS  PubMed  Google Scholar 

  17. Kunimoto, T., E. G. Lowrie, and S. Kumazawa. Controlled ultrafiltration (UF) with hemodialysis (HD): analysis of coupling between convective and diffusive mass transfer in a new HD-UF system. Trans. ASAIO 23:234–243, 1977.

    Article  Google Scholar 

  18. Landis, E. M., and J. R. Pappenheimer. Handbook of Physiology—Circulation. Washington, DC: American Physical Society, p. 961, 1963.

    Google Scholar 

  19. Langlois, W. E. Slow Viscous Flow. New York: McMillan, pp. 201–221, 1964.

    Google Scholar 

  20. Legallais, C., G. Catapano, B. V. Harten, and U. Baurmeister. A theoretical model to predict the in vitro performance of hemodiafilters. J. Membr. Sci. 168:3–15, 2000.

    Article  CAS  Google Scholar 

  21. Leypoldt, J. K., A. K. Cheung, L. Y. Agodoa, J. T. Daugirdas, T. Greene, and P. R. Keshaviah. Hemodialyzer mass transfer-area coefficients for urea increase at high dialysate flowrates. Kidney Int. 51:2013–2017, 1997.

    Article  CAS  PubMed  Google Scholar 

  22. Marconi, U. M. B., A. Puglisi, L. Rondoni, and A. Vulpiani. Fluctuation-dissipation: response theory in statistical physics. Phys. Rep. 461:111, 2008.

    Article  Google Scholar 

  23. Martinoli, R., E. I. Mohamed, C. Maiolo, R. Cianci, F. Denoth, S. Salvadori, and L. Iacopino. Total body water estimation using bioelectrical impedance: a meta-analysis of the data available in the literature. Acta Diabetol. 40:203–206, 2003.

    Article  Google Scholar 

  24. Morrette, R. A., and C. G. Gogos. Viscous dissipation in capillary flow of rigid PVC and PVC degradation. Polym. Eng. Sci. 8:272–280, 1968.

    Article  CAS  Google Scholar 

  25. Morti, S., J. Shao, and A. L. Zydney. Importance of asymmetric structure in determining mass transport characteristics of hollow fiber hemodialyzers. J. Membr. Sci. 224:39–49, 2003.

    Article  CAS  Google Scholar 

  26. Moussy, Y. Bioartificial kidney. I. Theoretical analysis of convective flow in hollow fiber modules: application to a bioartificial hemofilter. Biotechnol. Bioeng. 68:142–152, 2000.

    Article  CAS  PubMed  Google Scholar 

  27. Nakamura, K., and K. Matsumoto. Properties of protein adsorption onto pore surface during microfiltration: effects of solution environment and membrane hydrophobicity. J. Membr. Sci. 280:363–374, 2006.

    Article  CAS  Google Scholar 

  28. Noda, I., and C. C. Gryte. Mass transfer in regular arrays of hollow fibers in countercurrent dialysis. AIChE J. 25(1):113–122, 1979.

    Article  CAS  Google Scholar 

  29. Pallone, T. L., and J. Petersen. A mathematical model of continuous arteriovenous hemofiltration predicts performance. Trans. ASAIO 33:304–308, 1987.

    CAS  Google Scholar 

  30. Raff, M., M. Welsch, H. Göhl, H. Hildwein, M. Storr, and B. Wittner. Advanced modeling of highflux hemodialysis. J. Membr. Sci. 216:1–11, 2003.

    Article  CAS  Google Scholar 

  31. Renkin, E. M. Filtration, diffusion, and molecular sieving through porous cellulose membranes. J. Gen. Physiol. 38(2):225–243, 1954.

    CAS  PubMed  Google Scholar 

  32. Sigdell, J. E. Calculation of combined diffusive and convective mass transfer. Int. J. Artif. Organs 5:361–372, 1982.

    CAS  PubMed  Google Scholar 

  33. Stiller, S., H. Mann, and H. Brunner. Backfiltration in hemodialysis with highly permeable membranes. Contrib. Nephrol. 46:23–32, 1985.

    CAS  PubMed  Google Scholar 

  34. Trusek-Holownia, A. A catalytic membrane for hydrolysis reaction carried out in the two-liquid phase system—membrane preparation and characterisation, mathematical model of the process. J. Membr. Sci. 259:74–84, 2005.

    Article  CAS  Google Scholar 

  35. Truskey, G. A., F. Yuan, and D. F. Katz. Transport Phenomena in Biological Systems. Upper Saddle River, NJ: Prentice Hall, p. 104, 2004.

    Google Scholar 

  36. Werynski, A., and J. Wanieski. Theoretical description of mass transport in medical membrane devices. Artif. Organs 19(5):420–427, 1995.

    Article  CAS  PubMed  Google Scholar 

  37. Wüpper, A., F. Dellanna, C. A. Baldamus, and D. Woermann. Local transport processes in high-flux hollow fiber dialyzers. J. Membr. Sci. 131:181–193, 1997.

    Article  Google Scholar 

  38. Wüpper, A., D. Woermann, F. Dellanna, and C. A. Baldamus. Retrofiltration rates in high-flux hollow fiber hemodialysers: analysis of clinical data. J. Membr. Sci. 121:109–116, 1996.

    Article  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4