A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-010-0140-1 below:

Refinement of Elastic, Poroelastic, and Osmotic Tissue Properties of Intervertebral Disks to Analyze Behavior in Compression

  • Antoniou, J., T. Steffen, F. Nelson, N. Winterbottom, A. P. Hollander, R. A. Poole, M. Aebi, and M. Alini. The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J. Clin. Invest. 98(4):996–1003, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Ayotte, D. C., K. Ito, and S. Tepic. Direction-dependent resistance to flow in the endplate of the intervertebral disc: an ex vivo study. J. Orthop. Res. 19(6):1073–1077, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Broberg, K. B. On the mechanical behaviour of intervertebral discs. Spine 8(2):151–165, 1983.

    Article  CAS  PubMed  Google Scholar 

  • Charnley, J. The imbibition of fluid as a cause of herniation of the nucleus pulposus. Lancet 1(6699):124–127, 1952.

    Article  CAS  PubMed  Google Scholar 

  • Cowin, S. C. Bone poroelasticity. J. Biomech. 32(3):217–238, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Drost, M. R., P. Willems, H. Snijders, J. M. Huyghe, J. D. Janssen, and A. Huson. Confined compression of canine annulus fibrosus under chemical and mechanical loading. J. Biomech. Eng. 117(4):390–396, 1995.

    Article  CAS  PubMed  Google Scholar 

  • Ehlers, W., N. Karajan, and B. Markert. An extended biphasic model for charged hydrated tissues with application to the intervertebral disc. Biomech. Model. Mechanobiol. 8(3):233–251, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg, S. R., and A. J. Grodzinsky. Swelling of articular cartilage and other connective tissues: electromechanochemical forces. J. Orthop. Res. 3(2):148–159, 1985.

    Article  CAS  PubMed  Google Scholar 

  • Elliott, D. M., and L. A. Setton. Anisotropic and inhomogeneous tensile behavior of the human anulus fibrosus: experimental measurement and material model predictions. J. Biomech. Eng. 123:256–263, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Frijns, A. J. H., J. M. Huyghe, and J. D. Janssen. A validation of the quadriphasic mixture theory for intervertebral disc tissue. Int. J. Eng. Sci. 35:1419–1429, 1997.

    Article  CAS  Google Scholar 

  • Fujita, Y., D. R. Wagner, A. A. Biviji, N. A. Duncan, and J. C. Lotz. Anisotropic shear behavior of the annulus fibrosus: effect of harvest site and tissue prestrain. Med. Eng. Phys. 22:349–357, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Grodzinsky, A. J., V. Roth, E. Myers, W. D. Grossman, and V. C. Mow. The significance of electromechanical and osmotic forces in the nonequilibrium swelling behavior of articular cartilage in tension. J. Biomech. Eng. 103(4):221–231, 1981.

    Article  CAS  PubMed  Google Scholar 

  • Gu, W. Y., W. M. Lai, and V. C. Mow. A mixture theory for charged-hydrated soft tissues containing multi-electrolytes: passive transport and swelling behaviors. J. Biomech. Eng. 120:169–180, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Gu, W. Y., W. M. Lai, and V. C. Mow. Transport of fluid and ions through a porous-permeable charged-hydrated tissue, and streaming potential data on normal bovine articular cartilage. J. Biomech. 26(6):709–723, 1993.

    Article  CAS  PubMed  Google Scholar 

  • Gu, W. Y., V. C. Mao, R. J. Foster, M. Weidenbaum, V. C. Mow, and B. A. Rawlins. The anisotropic hydraulic permeability of human lumbar anulus fibrosus. Influence of age, degeneration, direction, and water content. Spine 24(23):2449–2455, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Hendry, N. G. C. The hydration of the nucleus pulposus and its relation to intervertebral disc derangement. J. Bone Joint Surg. 40B(1):132–144, 1958.

    Google Scholar 

  • Heneghan, P., and P. E. Riches. Determination of the strain-dependent hydraulic permeability of the compressed bovine nucleus pulposus. J. Biomech. 41(4):903–906, 2008.

    Article  PubMed  Google Scholar 

  • Holzapfel, G. A., C. A. Schulze-Bauer, G. Feigl, and P. Regitnig. Single lamellar mechanics of the human lumbar anulus fibrosus. Biomech. Model. Mechanobiol. 3(3):125–140, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Huyghe, J. M., and M. R. Drost. Uniaxial tensile testing of canine annulus fibrosus tissue under changing salt concentrations. Biorheology 41(3–4):255–261, 2004.

    CAS  PubMed  Google Scholar 

  • Huyghe, J. M., G. B. Houben, M. R. Drost, and C. C. van Donkelaar. An ionised/non-ionised dual porosity model of intervertebral disc tissue. Biomech. Model. Mechanobiol. 2(1):3–19, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Huyghe, J. M., and J. D. Janssen. Quadriphasic mechanics of swelling incompressible porous media. Int. J. Eng. Sci. 35(8):793–802, 1997.

    Article  Google Scholar 

  • Iatridis, J. C., J. P. Laible, and M. H. Krag. Influence of fixed charge density magnitude and distribution on the intervertebral disc: applications of a poroelastic and chemical electric (PEACE) model. J. Biomech. Eng. 125:12–24, 2003.

    Article  PubMed  Google Scholar 

  • Iatridis, J. C., J. J. MacLean, M. O’Brien, and I. A. Stokes. Measurements of proteoglycan and water content distribution in human lumbar intervertebral discs. Spine 32(14):1493–1497, 2007.

    Article  PubMed  Google Scholar 

  • Iatridis, J. C., L. A. Setton, M. Weidenbaum, and V. C. Mow. Alterations in the mechanical behavior of the human lumbar nucleus pulposus with degeneration and aging. J. Orthop. Res. 15(2):318–322, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Johannessen, W., and D. M. Elliott. Effects of degeneration on the biphasic material properties of human nucleus pulposus in confined compression. Spine 30(24):E724–E729, 2005.

    Article  PubMed  Google Scholar 

  • Johannessen, W., E. J. Vresilovic, A. C. Wright, and D. M. Elliott. Intervertebral disc mechanics are restored following cyclic loading and unloaded recovery. Ann. Biomed. Eng. 32(1):70–76, 2004.

    Article  PubMed  Google Scholar 

  • Lai, W. M., J. S. Hou, and V. C. Mow. A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 113(3):245–258, 1991.

    Article  CAS  PubMed  Google Scholar 

  • Laible, J. P., D. S. Pflaster, M. H. Krag, B. R. Simon, and L. D. Haugh. A poroelastic-swelling finite element model with application to the intervertebral disc. Spine 18(5):659–670, 1993.

    Article  CAS  PubMed  Google Scholar 

  • Laible, J. P., D. Pflaster, B. R. Simon, M. H. Krag, M. Pope, and L. D. Haugh. A dynamic material parameter estimation procedure for soft tissue using a poroelastic finite element model. J. Biomech. Eng. 116(1):19–29, 1994.

    Article  CAS  PubMed  Google Scholar 

  • Li, G. P., J. T. Bronk, K. N. An, and P. J. Kelly. Permeability of cortical bone of canine tibiae. Microvasc. Res. 34(3):302–310, 1987.

    Article  CAS  PubMed  Google Scholar 

  • Lim, T. H., and J. H. Hong. Poroelastic properties of bovine vertebral trabecular bone. J. Orthop. Res. 18(4):671–677, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Malko, J. A., W. C. Hutton, and W. A. Fajman. An in vivo MRI study of the changes in volume (and fluid content) of the lumbar intervertebral disc after overnight bed rest and during an 8-hour walking protocol. J. Spinal Disord. Tech. 15(2):157–163, 2002.

    PubMed  Google Scholar 

  • Mcmillan, D. W., G. Garbutt, and M. A. Adams. Effect of sustained loading on the water content of intervertebral discs: Implications for disc metabolism. Ann. Rheum. Dis. 55(12):880–887, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Mow, V. C., S. C. Kuei, W. M. Lai, and C. G. Armstrong. Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J. Biomech. Eng. 102(1):73–84, 1980.

    Article  CAS  PubMed  Google Scholar 

  • Natarajan, R. N., S. A. Lavender, H. A. An, and G. B. Andersson. Biomechanical response of a lumbar intervertebral disc to manual lifting activities: a poroelastic finite element model study. Spine 33(18):1958–1965, 2008.

    Article  PubMed  Google Scholar 

  • Natarajan, R. N., J. R. Williams, and G. B. Andersson. Recent advances in analytical modeling of lumbar disc degeneration. Spine 29(23):2733–2741, 2004.

    Article  PubMed  Google Scholar 

  • Perié, D., D. Korda, and J. C. Iatridis. Confined compression experiments on bovine nucleus pulposus and annulus fibrosus: sensitivity of the experiment in the determination of compressive modulus and hydraulic permeability. J. Biomech. 38(11):2164–2171, 2005.

    Article  PubMed  Google Scholar 

  • Riches, P. E., N. Dhillon, J. Lotz, A. W. Woods, and D. S. McNally. The internal mechanics of the intervertebral disc under cyclic loading. J. Biomech. 35:1263–1271, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Roughley, P. J. Biology of intervertebral disc aging and degeneration: involvement of the extracellular matrix. Spine 29(23):2691–2699, 2004.

    Article  PubMed  Google Scholar 

  • Schroeder, Y., D. M. Elliott, W. Wilson, F. P. Baaijens, and J. M. Huyghe. Experimental and model determination of human intervertebral disc osmoviscoelasticity. J. Orthop. Res. 26(8):1141–1146, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Setton, L. A., W. Zhu, M. Weidenbaum, A. Ratcliffe, and V. C. Mow. Compressive properties of the cartilaginous end-plate of the baboon lumbar spine. J. Orthop. Res. 11(2):228–239, 1993.

    Article  CAS  PubMed  Google Scholar 

  • Simon, B. R., J. P. Liable, D. Pflaster, Y. Yuan, and M. H. Krag. A poroelastic finite element formulation including transport and swelling in soft tissue structures. J. Biomech. Eng. 118(1):1–9, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Simon, B. R., J. S. Wu, M. W. Carlton, J. H. Evans, and L. E. Kazarian. Structural models for human spinal motion segments based on a poroelastic view of the intervertebral disk. J. Biomech. Eng. 107(4):327–335, 1985.

    Article  CAS  PubMed  Google Scholar 

  • Simon, B. R., J. S. Wu, M. W. Carlton, L. E. Kazarian, E. P. France, J. H. Evans, and O. C. Zienkiewicz. Poroelastic dynamic structural models of rhesus spinal motion segments. Spine 10(6):494–507, 1985.

    Article  CAS  PubMed  Google Scholar 

  • Stokes, I. A., M. Gardner-Morse, D. Churchill, and J. P. Laible. Measurement of a spinal motion segment stiffness matrix. J. Biomech. 35(4):517–521, 2002.

    Article  PubMed  Google Scholar 

  • Thompson, J. P., R. H. Pearce, M. T. Schechter, M. E. Adams, I. K. Tsang, and P. B. Bishop. Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral disc. Spine 15(5):411–415, 1990.

    Article  CAS  PubMed  Google Scholar 

  • Urban, J. P., and A. Maroudas. Swelling of the intervertebral disc in vitro. Connect. Tissue Res. 9(1):1–10, 1981.

    Article  CAS  PubMed  Google Scholar 

  • Urban, J. P., and J. F. Mcmullin. Swelling pressure of the intervertebral disc: influence of proteoglycan and collagen contents. Biorheology 22(2):145–157, 1985.

    CAS  PubMed  Google Scholar 

  • van der Veen, A. J., M. G. Mullender, I. Kingma, J. H. van Dieen, and T. H. Smit. Contribution of vertebral bodies endplates and intervertebral discs to the compression creep of spinal motion segments. J. Biomech. 41(6):1260–1268, 2008.

    Article  PubMed  Google Scholar 

  • van Loon, R., J. M. Huyghe, M. W. Wijlaars, and F. P. T. Baaijens. 3D FE implementation of an incompressible quadriphasic mixture model. Int. J. Numer. Methods Eng. 57:1243–1258, 2003.

    Article  Google Scholar 

  • Wilson, W., C. C. van Donkelaarm, and J. M. Huyghe. A comparison between mechano-electrochemical and biphasic swelling theories for soft hydrated tissues. J. Biomech. Eng. 127(1):158–165, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Yao, H., and W. Y. Gu. Three-dimensional inhomogeneous triphasic finite-element analysis of physical signals and solute transport in human intervertebral disc under axial compression. J. Biomech. 40(9):2071–2077, 2007.

    Article  PubMed  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4