A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-010-0120-5 below:

Surfactant Properties Differentially Influence Intravascular Gas Embolism Mechanics

  • Ayyaswamy, P. S. Introduction to biofluid mechanics, Chapter 17. In: Fluid Mechanics, edited by P. K. Kundu and I. M. Cohen. Amsterdam, Boston: Academic Press, 2008.

  • Branger, A. B., and D. M. Eckmann. Theoretical and experimental intravascular gas embolism absorption dynamics. J. Appl. Physiol. 87:1287–1295, 1999.

    CAS  PubMed  Google Scholar 

  • Branger, A. B., and D. M. Eckmann. Accelerated arteriolar gas embolism reabsorption by an exogenous surfactant. Anesthesiology 96(4):971–979, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Butler, P. J., T. C. Tsou, J. Y. S. Li, S. Usami, and S. Chien. Rate sensitivity of shear-induced changes in the lateral diffusion of endothelial cell membrane lipids: a role for membrane perturbation in shear-induced mapk activation. Faseb J. 15:216–218, 2001.

    Google Scholar 

  • Cavanagh, D. P., and D. M. Eckmann. Interfacial dynamics of stationary gas bubbles in flows in inclined tubes. J. Fluid Mech. 398:225–244, 1999.

    Article  Google Scholar 

  • Cavanagh, D. P., and D. M. Eckmann. The effects of a soluble surfactant on the interfacial dynamics of stationary bubbles in inclined tubes. J. Fluid Mech. 469:369–400, 2002.

    Article  CAS  Google Scholar 

  • Chang, C.-H., and E. I. Franses. Adsorption dynamics of surfactants at the air/water interface: a critical review of mathematical models, data, and mechanisms. Colloids Surf. A Physicochem. Eng. Aspects 100:1–45, 1995.

    Article  CAS  Google Scholar 

  • Das, B., P. C. Johnson, and A. S. Popel. Computational fluid dynamic studies of leukocyte adhesion effects on non-Newtonian blood flow through microvessels. Biorheology 37(3):239–258, 2000.

    CAS  PubMed  Google Scholar 

  • Eckmann, D. M., and D. P. Cavanagh. Bubble detachment by diffusion-controlled surfactant adsorption. Colloids Surf. A Physicochem. Eng. Aspects 227:21–33, 2003.

    Article  CAS  Google Scholar 

  • Eckmann, D. M., and V. N. Lomivorotov. Microvascular gas embolization clearance following perfluorocarbon administration. J. Appl. Physiol. 94:860–868, 2003.

    CAS  PubMed  Google Scholar 

  • Eckmann, D. M., S.C. Armstead, and F. Mardini. Surfactant reduces platelet-bubble and platelet-platelet binding induced by in vitro air embolism. Anesthesiology 103:1204–1210, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Eggleton, C. D., Y. P. Pawar, and K. J. Stebe. Insoluble surfactant on a drop in an extension flow: a generalization of the stagnated surface limit to deformable interfaces. J. Fluid Mech. 385:79–99, 1999.

    Article  CAS  Google Scholar 

  • Eggleton, C. D., T. M. Tsai, and K. J. Stebe. Tip streaming from a drop in the presence of surfactants. Phys. Rev. Lett. 87(4):Art. No. 048302, 2001.

  • Ferri, J. K., and K. J. Stebe. Which surfactants reduce surface tension faster? A scaling argument for diffusion-controlled adsorption. Adv. Colloid Interface Sci. 85(1):61–97, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Fung, Y. C. Biomechanics: Circulation. New York, USA: Springer, 1997.

    Google Scholar 

  • Ghadiali, S. N., and D. P. Gaver. The influence of non-equilibrium surfactant dynamics on the flow of a semi-infinite bubble in a rigid cylindrical capillary tube. J. Fluid Mech. 478:165–196, 2003.

    Article  Google Scholar 

  • Hammon, J. W., D. A. Stump, J. B. Butterworth, and D. M. Moody. Approaches to reduce neurologic complications during cardiac surgery. Semin. Thorac. Cardiovasc. Surg. 13(2):184–191, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Huang, H. D., R. D. Kamm, and R. T. Lee. Cell mechanics and mechanotransduction: pathways, probes, and physiology. Am .J. Physiol. Cell Physiol. 287:C1–C11, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Jacqmin, D. Calculation of two-phase Navier–Stokes flows using phase-field modeling. J. Comput. Phys. 55:96, 1999.

    Article  Google Scholar 

  • James, A. J., and J. Lowengrub. A surfactant-conserving volume-of-fluid method for interfacial flows withinsoluble surfactant. J. Comput. Phys. 201:685–722, 2004.

    Article  CAS  Google Scholar 

  • Johnson, R. A., and A. Borhan. Pressure-driven motion of surfactant-laden drops through cylindrical capillaries: effect of surfactant solubility. J. Colloid Interface Sci. 261:529–541, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi, S., S. D. Crooks, and D. M. Eckmann. Surfactant mitigation of gas bubble contact-induced endothelial cell death. Undersea Hyperb. Med., in press, 2010.

  • Lampe, J. W., Z. Liao, I. J. Dmochowski, P. S. Ayyaswamy, and D. M. Eckmann. Imaging macromolecular interactions at an interface. Langmuir 26(4):2452–2459, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Lee, L., and R. Leveque. An immmersed interface method for incompressible Navier-Stokes equations. SIAM J. Sci. Comput. 25:832, 2003.

    Article  Google Scholar 

  • Levich, V.G. Physicochemical Hydrodynamics. New Jersey: Prentice Hall, 1962.

    Google Scholar 

  • Li, X. F., and C. Pozrikidis. The effect of surfactant on drop deformation and on the rheology of dilute emulsion in stokes flow. J. Fluid Mech. 341:165–194, 1997.

    Article  CAS  Google Scholar 

  • McNeil, P. L., and R. A. Steinhardt. Loss, restoration, and maintenance of plasma membrane integrity. J. Cell Biol. 137:1–4, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Mendelson, H. D. The prediction of bubble terminal velocities from wave theory. AIChE J. 13:250, 1967.

    Article  CAS  Google Scholar 

  • Mendez, J. L., O. B. Rickman, and R. D. Hubmayr. Plasma membrane stress failure in ventilator-injured lungs—a hypothesis about osmoregulation and the pharmacologic protection of the lungs against deformation. Biol. Neonate 85:290–292, 2004.

    Article  PubMed  Google Scholar 

  • Milliken, W. J., and L. G. Leal, The influence of surfactant on the deformation and breakup of a viscous drop. J. Colloid Interface Sci. 166:275–285, 1994.

    Article  CAS  Google Scholar 

  • Morales, D., C. Solans, J. M. Gutirrez, M. J. Garcia-Celma, and U. Olsson. Oil/water droplet formation by temperature change in the water/c16e6/mineral oil system. Langmuir 22(7):3014–3020, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Mukundakrishnan, K., S. Quan, D. M. Eckmann, and P. S. Ayyaswamy. Numerical study of wall effects on buoyant gas-bubble rise in a liquid-filled finite cylinder. Phys. Rev. E, 76:036308(1–15), 2007.

    Article  Google Scholar 

  • Mukundakrishnan, K., P. S. Ayyaswamy, and D. M. Eckmann. Finite-sized gas bubble motion in a blood vessel: non-newtonian effects. Phys. Rev. E, 78:036303(1–15), 2008.

    Article  Google Scholar 

  • Mukundakrishnan K., D. M. Eckmann, and P. S. Ayyaswamy. Bubble motion through a generalized power-law fluid flowing in a vertical tube. Ann. NY Acad. Sci. 161:256–267, 2008.

    Google Scholar 

  • Mukundakrishnan, K., P. S. Ayyaswamy, and D. M. Eckmann. Bubble motion in a blood vessel: shear stress induced endothelial cell injury. J. Biomech. Eng. 131(7):074516, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Muradoglu, M., and G. Tryggvason. A front-tracking method for computation of interfacial flows with soluble surfactants. J. Comput. Phys. 227:2238–2262, 2008.

    Article  CAS  Google Scholar 

  • Oguz, H.N., and S. S. Sadhal. Effects of soluble and insoluble surfactants on the motion of drops. J. Fluid Mech. 194:563–579, 1988.

    Article  CAS  Google Scholar 

  • Osher, S., and R. Fedkiw. Level set methods: an overview and some recent results. J. Comput. Phys. 169:463, 2001.

    Article  CAS  Google Scholar 

  • Palaparthi, R., D. T. Papageorgiou, and C. Maldarelli. Theory and experiments on the stagnant cap regime in the motion of spherical surfactant-laden bubbles. J. Fluid Mech. 559:1–44, 2006.

    Article  CAS  Google Scholar 

  • Papanastasiou, T. C. Flows of materials with yield. J. Rheol. 31(5):385–404, 1987.

    Article  CAS  Google Scholar 

  • Park, C. W. Influence of soluble surfactant on the motion of a finite bubble in a capillary tube. Phys. Fluids A 4(11):2335–2347, 1992.

    Article  CAS  Google Scholar 

  • Pugsley, W., L. Klinger, C. Paschalis, T. Treasure, M. Harrison, and S. Newman. The impact of microemboli during cardiopulmonary bypass on neuropsychological functioning. Stroke 25:1393–1399, 1994.

    CAS  PubMed  Google Scholar 

  • Quan, S., and D. P. Schmidt. A moving mesh interface tracking method for 3d incompressible two-phase flows. J. Comput. Phys. 221:761–780, 2007.

    Article  Google Scholar 

  • Rodrigue, D., D. De Kee, and C. F. Chan Man Fong. An experimental study of the effect of surfactants on the free rise velocity of gas bubbles. J. Non-Newton. Fluid Mech. 66(3):213–232, 1996.

    Article  CAS  Google Scholar 

  • Rodrigue, D., D. De Kee, C. F. Chan Man Fong, and J. Yao. The slow motion of a single gas bubble in a non-newtonian fluid containing surfactants. J. Non-Newton. Fluid Mech. 86:211–227, 1999.

    Article  CAS  Google Scholar 

  • Sadhal, S. S., P. S. Ayyaswamy, and J. N. Chung. Transport Phenomena with Drops and Bubbles. New York, USA: Springer, 1997.

    Google Scholar 

  • Scardovelli, R., and S. Zaleski. Direct numerical simulation of free surface and interfacial flow. Annu. Rev. Fluid Mech. 31:576, 1999.

    Article  Google Scholar 

  • Sharan, M., and A. S. Popel. A two-phase model for blood flow in narrow tubes with increased viscosity near the wall. Biorheology 38:415–428, 2001.

    CAS  PubMed  Google Scholar 

  • Shin, S., and D. Juric. Modeling three-dimensional multiphase flow using a level contour reconstructionmethod for front tracking without connectivity. J. Comput. Phys. 180:427–470, 2002.

    Article  CAS  Google Scholar 

  • Stigter, D., and K. J. Mysels. Tracer electrophoresis. ii. the mobility of the micelle of sodium lauryl sulfate and its interpretation in terms of zeta potential and charge. J. Phys. Chem. 59(1):4551, 1955.

    Article  Google Scholar 

  • Stone, H. A. A simple derivation of the time-dependent convective-diffusive equation for surfactant transport along a deforming interface. Phys. Fluids A 2:111–112, 1990

    Article  CAS  Google Scholar 

  • Sussman, M., and E. G. Puckett. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys. 162(2):301–337, 2000.

    Article  CAS  Google Scholar 

  • Sussman, M., A. S. Almgren, J. B. Bell, P. Colella, L. Howell, and M. Welcome. An adaptive level set approach for incompressible two-phase flows. J. Comput. Phys. 148:81, 1999.

    Article  Google Scholar 

  • Suzuki, A., S. C. Armstead, and D. M. Eckmann. Surfactant reduction in embolism bubble adhesion and endothelial damage. Anesthesiology 101:97–103, 2004.

    Article  PubMed  Google Scholar 

  • Swaminathan, T. N., K. Mukundakrishnan, P. S. Ayyaswamy, and D. M. Eckmann. Effect of a soluble surfactant on a finite sized bubble motion in a blood vessel. J. Fluid Mech. 642:509–539, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Torres, D. J., and J. U. Brackbill. The point-set method: front tracking without connectivity. J. Comput. Phys. 165:620, 2000.

    Article  CAS  Google Scholar 

  • Tsai, T. M., and M. J. Miksis. Dynamics of a drop in a constricted capillary tube. J. Fluid Mech. 274:197–217, 1994.

    Article  Google Scholar 

  • Udaykumar, H. S., L. Tran, D. M. Belk, and K. J. Vanden. An eulerian method for computation of multimaterial impact with ENO shock-capturingand sharp interfaces. J. Comput. Phys. 186:136–177, 2003.

    Article  Google Scholar 

  • Unverdi, S. O., and G. Tryggvason. A front-tracking method for viscous incompressible, multi-fluid flows. J. Comput. Phys. 100(1):25–37, 1992.

    Article  Google Scholar 

  • Vlahakis, N. E., and R. D. Hubmayr. Invited review:plasma membrane stress failure in alveolar epithelial cells. J. Appl. Physiol. 89:2490–2496, 2000.

    CAS  PubMed  Google Scholar 

  • Yon, S., and C. Pozrikidis. A finite volume/boundary-element method for flow past interfaces in the presence of surfactants, with application to shear flow past a viscous drop. Comput. Fluids 27:879–902, 1998.

    Article  CAS  Google Scholar 

  • Zhang, J., D. M. Eckmann, and P. S. Ayyaswamy. A front tracking method for a deformable intravascular bubble in a tube with soluble surfactant transport. J. Comput. Phys. 214:366–396, 2006.

    Article  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4