A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-010-0111-6 below:

The Role of Airway Epithelium in Replenishment of Evaporated Airway Surface Liquid From the Human Conducting Airways

References
  1. Ballard, S. T., and D. Spadafora. Fluid secretion by submucosal glands of the tracheobronchial airways. Respir. Physiol. Neurobiol., 159(3):271–277, 2007.

    Article  CAS  PubMed  Google Scholar 

  2. Ballard, S. T., L. Trout, Z. Bebok, E. J. Sorscher, and A. Crews. Cftr involvement in chloride, bicarbonate, and liquid secretion by airway submucosal glands. AJP - Lung Cell. Mol. Physiol. 277(4):L694–L699, 1999.

    CAS  Google Scholar 

  3. Blake, J. R. Mechanics of ciliary transport. Cell Motil. Suppl. 1:41–45, 1982.

    Article  Google Scholar 

  4. Blake, J. R. Mechanics of muco-ciliary transport. J. Appl. Math., 32(1–3):69–87, 1984.

    Google Scholar 

  5. Boucher, R. C. Airway surface dehydration in cystic fibrosis: pathogenesis and therapy. Annu. Rev. Med. 58(1):157–170, 2007.

    Article  CAS  PubMed  Google Scholar 

  6. Boucher, R. C. Cystic fibrosis: a disease of vulnerability to airway surface dehydration. Trends Mol. Med. 13(6):231–240, 2007.

    Article  CAS  PubMed  Google Scholar 

  7. Boucher, R. C., M. J. Stutts, P. A. Bromberg, and J. T. Gatzy. Regional differences in airway surface liquid composition. J. Appl. Physiol. 50(3):613–620, 1981.

    CAS  PubMed  Google Scholar 

  8. Choi, J.-I., and C. S. Kim. Mathematical analysis of particle deposition in human lungs: an improved single path transport model. Inhal. Toxicol. 19(11):925–939, 2007.

    Article  CAS  PubMed  Google Scholar 

  9. Cole, P. The Respiratory Role of the Upper Airways: A Selective Clinical and Pathophysiological Review. New York: Decker Inc., 1992.

  10. Daviskas, E., I. Gonda, and S. D. Anderson. Mathematical modeling of heat and water transport in human respiratory tract. J. Appl. Physiol. 69(1):362–372, 1990.

    CAS  PubMed  Google Scholar 

  11. Daviskas, E., I. Gonda, and S. D. Anderson. Local airway heat and water vapour losses. Respir. Physiol. 84(1):115–132, 1991.

    Article  CAS  PubMed  Google Scholar 

  12. Ficker, J. H. Physiology and pathophysiology of bronchial secretion. Pneumologie 62(Suppl 1):11–13, 2008.

    Article  Google Scholar 

  13. Folkesson, H. G., M. A. Matthay, A. Frigeri, and A. S. Verkman. Transepithelial water permeability in microperfused distal airways. Evidence for channel-mediated water transport. J. Clin. Invest. 97(3):664–671, 1996.

    Article  CAS  PubMed  Google Scholar 

  14. Freund, B., and A. Youn. Environmental influences on body fluid balance during exercise—cold exposure. Technical report. Natick, MA: Army Research Inst. of Environmental Medicine.

  15. Fulford, G. R., and J. R. Blake. Muco-ciliary transport in the lung. J. Theor. Biol. 121(4):381–402, 1986.

    Article  CAS  PubMed  Google Scholar 

  16. Hanna, L. M. Modelling of Heat and Water Vapour Transport in the Human Respiratory Tract. PhD thesis, University of Pennsylvania, Philadelphia.

  17. Ingenito, E. P., J. Solway, E. R. McFadden, B. M. Pichurko, E. G. Cravalho, and J. M. Drazen. Finite difference analysis of respiratory heat transfer. J. Appl. Physiol. 61(6):2252–2259, 1986.

    CAS  PubMed  Google Scholar 

  18. Jiang, C., W. Finkbeiner, J. Widdicombe, P. B. McCray, and S. S. Miller. Altered fluid transport across airway epithelium in cystic fibrosis. Science 262:424–427, 1993.

    Article  CAS  PubMed  Google Scholar 

  19. Kilgour, E., N. Rankin, S. Ryan, and R. Pack. Mucociliary function deteriorates in the clinical range of inspired air temperature and humidity. Intensive Care Med. 30(7):1491–1494, 2004.

    Article  PubMed  Google Scholar 

  20. King, M., M. Agarwal, and J. Shukla. A planar model for mucociliary transport: effect of mucus viscoelasticity. Biorheology 30:49–61, 1993.

    CAS  PubMed  Google Scholar 

  21. Liu, J., and R. Ewing. An operator splitting method for nonlinear reactive transport equations and its implementation based on dll and com. In: Current Trends in High Performance Computing and Its Applications. Berlin: Springer, 2005, pp. 93–102.

  22. Livraghi, A., B. R. Grubb, E. J. Hudson, K. J. Wilkinson, J. K. Sheehan, M. A. Mall, W. K. O’Neal, R. C. Boucher, and S. H. Randell. Airway and lung pathology due to mucosal surface dehydration in {beta}-epithelial na+ channel-overexpressing mice: role of tnf-{alpha} and il-4r{alpha} signaling, influence of neonatal development, and limited efficacy of glucocorticoid treatment. J. Immunol. 182(7):4357–4367, 2009.

    Article  CAS  PubMed  Google Scholar 

  23. Matsui, H., S. H. Randell, S. W. Peretti, C. William-Davis, and R. C. Boucher. Coordinated clearance of periciliary liquid and mucus from airway surfaces. J. Clin. Invest. 102(6):1125–1131, 1998.

    Article  CAS  PubMed  Google Scholar 

  24. McFadden, E. R., B. M. Pichurko, H. F. Bowman, E. Ingenito, S. Burns, N. Dowling, and J. Solway. Thermal mapping of the airways in humans. J. Appl. Physiol. 58(2):564–570, 1985.

    PubMed  Google Scholar 

  25. Mercer, R. R., M. L. Russell, V. L. Roggli, and J. D. Crapo. Cell number and distribution in human and rat airways. Am. J. Respir. Cell Mol. Biol. 10(6):613–624, 1994.

    CAS  PubMed  Google Scholar 

  26. Mercke, U. The influence of varying air humidity on mucociliary activity. Acta Otolaryngol. 79(1–2):133–139, 1975.

    Article  CAS  PubMed  Google Scholar 

  27. Mercke, U., and N. G. Toremalm. Air humidity and mucociliary activity. Ann. Otol. Rhinol. Laryngol. 85(1 Pt 1):32–37, 1976.

    CAS  PubMed  Google Scholar 

  28. Mitchell, J. W., E. R. Nadel, and J. A. Stolwijk. Respiratory weight losses during exercise. J. Appl. Physiol. 32(4):474–476, 1972.

    CAS  PubMed  Google Scholar 

  29. Nadel, J. A., B. Davis, and R. J. Phipps. Control of mucus secretion and ion transport in airways. Annu. Rev. Physiol. 41(1):369–381, 1979.

    Article  CAS  PubMed  Google Scholar 

  30. Perry, R., and D. Green. Perry’s Chemical Engineers’ Handbook, 7th ed. McGraw-Hill, 1997.

  31. Phillips, J. E., L. B. Wong, and D. B. Yeates. Bidirectional actively coupled water transport across tracheal epithelium. Resp. Crit. Care Med. 157(3):A848, 1998.

    Google Scholar 

  32. Promvonge, P., and S. Eiamsa-ard. Heat transfer augmentation in a circular tube using v-nozzle turbulator inserts and snail entry. Exp. Therm. Fluid Sci. 32(1):332–340, 2007.

    Article  CAS  Google Scholar 

  33. Quinton, P. M. Composition and control of secretions from tracheal bronchial submucosal glands. Nature 279(5713):551–552, 1979.

    Article  CAS  PubMed  Google Scholar 

  34. Ryan, S. N., N. Rankin, E. Meyer, and R. Williams. Energy balance in the intubated human airway is an indicator of optimal gas conditioning. Crit. Care Med. 30(2):355–361, 2002.

    Article  PubMed  Google Scholar 

  35. Saidel, G. M., K. L. Kruse, and F. P. Primiano. Model simulation of heat and water transport dynamics in an airway. J. Biomech. Eng. 105(2):188–193, 1983.

    Article  CAS  PubMed  Google Scholar 

  36. Salinas, D., P. M. Haggie, J. R. Thiagarajah, Y. Song, K. Rosbe, W. E. Finkbeiner, D. W. Nielson, and A. S. Verkman. Submucosal gland dysfunction as a primary defect in cystic fibrosis. FASEB J. 19(3):431–433, 2005.

    CAS  PubMed  Google Scholar 

  37. Sauret, V., P. M. Halson, I. W. Brown, J. S. Fleming, and A. G. Bailey. Study of the three-dimensional geometry of the central conducting airways in man using computed tomographic (ct) images. J. Anat. 200(Pt 2):123–134, 2002.

    Article  CAS  PubMed  Google Scholar 

  38. Sleigh, M. A. The physiology of cilia and mucociliary interactions. Annu. Rev. Physiol. 52(1):137–155, 1990.

    Article  PubMed  Google Scholar 

  39. Sleigh, M. A., J. R. Blake, and N. Liron. The propulsion of mucus by cilia. Am. Rev. Respir. Dis. 137(3):726–741, 1988.

    CAS  PubMed  Google Scholar 

  40. Tarran, R., B. Button, and R. C. Boucher. Regulation of normal and cystic fibrosis airway surface liquid volume by phasic shear stress. Annu. Rev. Physiol. 68(1):543–561, 2006.

    Article  CAS  PubMed  Google Scholar 

  41. Tarran, R., B. Button, M. Picher, A. M. Paradiso, C. M. Ribeiro, E. R. Lazarowski, L. Zhang, P. L. Collins, R. J. Pickles, J. J. Fredberg, and R. C. Boucher. Normal and cystic fibrosis airway surface liquid Hhomeostasis: the effects of phasic shear stress and viral infections. J. Biol. Chem. 280(42):35751–35759, 2005.

    Article  CAS  PubMed  Google Scholar 

  42. Tawhai, M. H., and P. J. Hunter. Modeling water vapor and heat transfer in the normal and the intubated airways. Ann. Biomed. Eng. 32(4):609–622, 2004.

    Article  PubMed  Google Scholar 

  43. Tos, M. Development of the tracheal glands in man. Dan. Med. Bull. 15(7):206–215, 1968.

    CAS  PubMed  Google Scholar 

  44. Trout, L., J. T. Gatzy, and S. T. Ballard. Acetylcholine-induced liquid secretion by bronchial epithelium: role of cl- and hco-3 transport. AJP - Lung Cell. Mol. Physiol. 275(6):L1095–L1099, 1998.

    CAS  Google Scholar 

  45. Trout, L., M. I. Townsley, A. L. Bowden, and S. T. Ballard. Disruptive effects of anion secretion inhibitors on airway mucus morphology in isolated perfused pig lung. J. Physiol. 549(Pt 3):845–853, 2003.

    Article  CAS  PubMed  Google Scholar 

  46. Tsai, C. L., G. M. Saidel, E. R. McFadden, and J. M. Fouke. Radial heat and water transport across the airway wall. J. Appl. Physiol. 69(1):222–231, 1990.

    CAS  PubMed  Google Scholar 

  47. Tsu, M. E., A. L. Babb, D. D. Ralph, and M. P. Hlastala. Dynamics of heat, water, and soluble gas exchange in the human airways: 1. A model study. Ann. Biomed. Eng. 16(6):547–571, 1988.

    Article  CAS  PubMed  Google Scholar 

  48. Ueki, I., V. F. German, and J. A. Nadel. Micropipette measurement of airway submucosal gland secretion. Autonomic effects. Am. Rev. Respir. Dis. 121(2):351–357, 1980.

    CAS  PubMed  Google Scholar 

  49. Valvano, J., J. Allen, and H. F. Bowman. The simultaneous measurement of thermal conductivity, thermal diffusivity, and perfusion in small volumes of tissue. J. Biomech. Eng. 106:192–197, 1984.

    Article  CAS  PubMed  Google Scholar 

  50. Warren, N. J., M. H. Tawhai, and E. J. Crampin. A mathematical model of calcium-induced fluid secretion in airway epithelium. J. Theor. Biol. 259(4):837–849, 2009.

    Article  CAS  PubMed  Google Scholar 

  51. Warren, N. J., M. H. Tawhai, and E. J. Crampin. Mathematical modelling of calcium wave propagation in airway epithelium: evidence for regenerative atp release. Exp. Physiol. 95(1):232–249, 2010.

    Article  CAS  PubMed  Google Scholar 

  52. Weibel, E. R. Morphometry of the Human Lung, 1st ed. Berlin: Springer-Verlag, 1963.

    Google Scholar 

  53. Whimster, W. (1986). Number and mean volume of individual submucous glands in the human tracheobronchial tree. Appl. Pathol. 4:24–32, 1986.

    CAS  PubMed  Google Scholar 

  54. Widdicombe, J. H. Regulation of the depth and composition of airway surface liquid. J. Anat. 201(4):313–318, 2002.

    Article  CAS  PubMed  Google Scholar 

  55. Widdicombe, J. H., S. J. Bastacky, D. X. Wu, and C. Y. Lee. Regulation of depth and composition of airway surface liquid. Eur. Respir. J. 10(12):2892–2897, 1997.

    Article  CAS  PubMed  Google Scholar 

  56. Williams, R. B. The effects of excessive humidity. Respir. Care Clin. N. Am., 4(2):215–228, 1998.

    CAS  PubMed  Google Scholar 

  57. Williams, R., N. Rankin, T. Smith, D. Galler, and P. Seakins. Relationship between the humidity and temperature of inspired gas and the function of the airway mucosa. Crit. Care Med. 24(11):1920–1929, 1996.

    Article  CAS  PubMed  Google Scholar 

  58. Wine, J. J., and N. S. Joo. Submucosal glands and airway defense. Proc. Am. Thorac. Soc. 1(1):47–53, 2004.

    Article  CAS  PubMed  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4