Baker, S. C., N. Atkin, P. A. Gunning, N. Granville, K. Wilson, D. Wilson, and J. Southgate. Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies. Biomaterials 27:3136–3146, 2006.
Bashur, C. A., L. A. Dahlgren, and A. S. Goldstein. Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(D, L-lactic-co-glycolic acid) meshes. Biomaterials 27:5681–5688, 2006.
Bhattarai, S. R., N. Bhattarai, H. K. Yi, P. H. Hwang, D. I. Cha, and H. Y. Kim. Novel biodegradable electrospun membrane: scaffold for tissue engineering. Biomaterials 25:2595–2602, 2004.
Bini, T., S. Gao, T. Tan, S. Wang, A. Lim, L. Hai, and S. Ramakrishna. Electrospun poly(L-lactide-co-glycolide) biodegradable polymer nanofibre tubes for peripheral nerve regeneration. Nanotechnology 15:1459–1464, 2004.
Boland, E., G. Wnek, D. Simpson, K. Pawlowski, and G. Bowlin. Tailoring tissue engineering scaffolds using electrostatic processing techniques: a study of poly(glycolic acid) electrospinning. J. Macromol. Sci. Pure Appl. Chem. 38:1231–1243, 2001.
Boudriot, U., R. Dersch, A. Greiner, and J. Wendorff. Electrospinning approaches toward scaffold engineering—a brief overview. Artif. Organs 30:785–792, 2006.
Byrne, E. M., E. Farrell, L. A. McMahon, M. G. Haugh, F. J. O’Brien, V. A. Campbell, P. J. Prendergast, and B. C. O’Connell. Gene expression by marrow stromal cells in a porous collagen-glycosaminoglycan scaffold is affected by pore size and mechanical stimulation. J. Mater. Sci. Mater. Med. 19:3455–3463, 2008.
Chen, J., G. H. Altman, V. Karageorgiou, R. Horan, A. Collette, V. Volloch, T. Colabro, and D. L. Kaplan. Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. J. Biomed. Mater. Res. 67A:559–570, 2003.
Chew, S. Y., R. Mi, A. Hoke, and K. W. Leong. The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation. Biomaterials 29:653–661, 2008.
Choi, S., and W. L. Murphy. Multifunctional mixed SAMs that promote both cell adhesion and noncovalent DNA immobilization. Langmuir 24:6873–6880, 2008.
Chua, K. N., W. S. Lim, P. C. Zhang, H. F. Lu, J. Wen, S. Ramakrishna, K. W. Leong, and H. Q. Mao. Stable immobilization of rat hepatocyte spheroids on galactosylated nanofiber scaffold. Biomaterials 26:2537–2547, 2005.
Cooper, J. A., H. H. Lu, F. K. Ko, J. W. Freeman, and C. T. Laurencin. Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials 26:1523–1532, 2005.
Delany, A. M., and E. Canalis. Basic fibroblast growth factor destabilizes osteonectin mRNA in osteoblasts. Am. J. Physiol. 274:C734–C740, 1998.
Fantner, G. E., H. Birkedal, J. H. Kindt, T. Hassenkam, J. C. Weaver, J. A. Cutroni, B. L. Bosma, L. Bawazer, M. M. Finch, G. A. Cidade, D. E. Morse, G. D. Stucky, and P. K. Hansma. Influence of the degradation of the organic matrix on the microscopic fracture behavior of trabecular bone. Bone 35:1013–1022, 2004.
Fassett, J. T., D. Tobolt, C. J. Nelsen, J. H. Albrecht, and L. K. Hansen. The role of collagen structure in mitogen stimulation of ERK, cyclin D1 expression, and G(1)-S progression in rat hepatocytes. J. Biol. Chem. 278:31691–31700, 2003.
Franceschi, R. T., G. Xiao, D. Jiang, R. Gopalakrishnan, S. Yang, and E. Reith. Multiple signaling pathways converge on the Cbfa1/Runx2 transcription factor to regulate osteoblast differentiation. Connect. Tissue Res. 44(Suppl 1):109–116, 2003.
Guan, D., Z. Chen, C. Huang, and Y. Lin. Attachment, proliferation and differentiation of BMSCs on gas-jet/electrospun nHAP/PHB fibrous scaffolds. Appl. Surf. Sci. 255:324–327, 2008.
Gupta, P., C. Elkins, T. Long, and G. Wilkes. Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer 46:4799–4810, 2005.
He, X., and E. Jabbari. Material properties and cytocompatibility of injectable MMP degradable poly(lactide ethylene oxide fumarate) hydrogel as a carrier for marrow stromal cells. Biomacromolecules 8:780–792, 2007.
He, X. Z., J. Y. Ma, and E. Jabbari. Effect of grafting RGD and BMP-2 protein-derived peptides to a hydrogel substrate on osteogenic differentiation of marrow stromal cells. Langmuir 24:12508–12516, 2008.
Henderson, J. A., X. Z. He, and E. Jabbari. Concurrent differentiation of marrow stromal cells to osteogenic and vasculogenic lineages. Macromol. Biosci. 8:499–507, 2008.
Huang, L., K. Nagapudi, R. Apkarian, and E. Chaikof. Engineered collagen-PEO nanofibers and fabrics. J. Biomater. Sci. Polym. Ed. 12:979–993, 2001.
Huang, Z., Y. Zhang, S. Ramakrishna, and C. Lim. Electrospinning and mechanical characterization of gelatin nanofibers. Polymer 45:5361–5368, 2004.
Huss, R., C. A. Hoy, and H. J. Deeg. Contact- and growth factor-dependent survival in a canine marrow-derived stromal cell line. Blood 85:2414–2421, 1995.
Jabbari, E., X. Z. He, M. T. Valarmathi, A. S. Sarvestani, and W. J. Xu. Material properties and bone marrow stromal cells response to in situ crosslinkable RGD-functionlized lactide-co-glycolide scaffolds. J. Biomed. Mater. Res. 89A:124–137, 2009.
Jaiswal, N., S. E. Haynesworth, A. I. Caplan, and S. P. Bruder. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J. Cell Biochem. 64:295–312, 1997.
Kim, H. W., H. H. Lee, and J. C. Knowles. Electrospinning biomedical nanocomposite fibers of hydroxyapaite/poly(lactic acid) for bone regeneration. J. Biomed. Mater. Res. 79A:643–649, 2006.
Kim, H. W., H. E. Kim, and J. C. Knowles. Production and potential of bioactive glass nanofibers as a next-generation biomaterial. Adv. Funct. Mater. 16:1529–1535, 2006.
Lee, C. H., H. J. Shin, I. H. Cho, Y. M. Kang, I. A. Kim, K. D. Park, and J. W. Shin. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials 26:1261–1270, 2005.
Ma, Z. W., M. Kotaki, R. Inai, and S. Ramakrishna. Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng. 11:101–109, 2005.
Ma, Z. W., M. Kotaki, T. Yong, W. He, and S. Ramakrishna. Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials 26:2527–2536, 2005.
Marolt, D., A. Augst, L. E. Freed, C. Vepari, R. Fajardo, N. Patel, M. Gray, M. Farley, D. Kaplan, and G. Vunjak-Novakovic. Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors. Biomaterials 27:6138–6149, 2006.
Matthews, J., G. Wnek, D. Simpson, and G. Bowlin. Electrospinning of collagen nanofibers. Biomacromolecules 3:232–238, 2002.
Mercado, A. E., J. Y. Ma, X. Z. He, and E. Jabbari. Release characteristics and osteogenic activity of recombinant human bone morphogenetic protein-2 grafted to novel self-assembled poly(lactide-co-glycolide fumarate) nanoparticles. J. Control. Release 140:148–156, 2009.
Muller, P. Y., H. Janovjak, A. R. Miserez, and Z. Dobbie. Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques 32:1372–1379, 2002.
Murugan, R., and S. Ramakrishna. Nano-featured scaffolds for tissue engineering: a review of spinning methodologies. Tissue Eng. 12:435–447, 2006.
Ohkawa, K., D. Cha, H. Kim, A. Nishida, and H. Yamamoto. Electrospinning of chitosan. Macromol. Rapid Commun. 25:1600–1605, 2004.
Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29:e45, 2001.
Pham, Q., U. Sharma, and A. Mikos. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 12:1197–1211, 2006.
Powell, H. M., D. M. Supp, and S. T. Boyce. Influence of electrospun collagen on wound contraction of engineered skin substitutes. Biomaterials 29:834–843, 2008.
Schindler, M., I. Ahmed, J. Kamal, A. Nur-E-Kamal, T. H. Grafe, H. Y. Chung, and S. Meiners. A synthetic nanofibrillar matrix promotes in vivo-like organization and morphogenesis for cells in culture. Biomaterials 26:5624–5631, 2005.
Schneider, A., G. Francius, R. Obeid, P. Schwinte, J. Hemmerle, B. Frisch, P. Schaaf, J. C. Voegel, B. Senger, and C. Picart. Polyelectrolyte multilayers with a tunable Young’s modulus: influence of film stiffness on cell adhesion. Langmuir 22:1193–1200, 2006.
Schneider, O. D., S. Loher, T. J. Brunner, L. Uebersax, M. Simonet, R. N. Grass, H. P. Merkle, and W. J. Stark. Cotton wool-like nanocomposite biomaterials prepared by electrospinning: in vitro bioactivity and osteogenic differentiation of human mesenchymal stem cells. J. Biomed. Mater. Res. Appl. Biomater. 84B:350–362, 2008.
Shih, Y. R., C. N. Chen, S. W. Tsai, Y. J. Wang, and O. K. Lee. Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells 24:2391–2397, 2006.
Shin, H., C. Lee, I. Cho, Y. Kim, Y. Lee, I. Kim, K. Park, N. Yui, and J. Shin. Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: mechanical stability, degradation and cellular responses under mechanical stimulation in vitro. J. Biomater. Sci. Polymer Ed. 17:103–119, 2006.
Sombatmankhong, K., N. Sanchavanakit, P. Pavasant, and P. Supaphol. Bone scaffolds from electrospun fiber mats of poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and their blend. Polymer 48:1419–1427, 2007.
Stein, G. S., J. B. Lian, J. L. Stein, A. J. Van Wijnen, and M. Montecino. Transcriptional control of osteoblast growth and differentiation. Physiol. Rev. 76:593–629, 1996.
Summitt, M. C., and K. D. Reisinger. Characterization of the mechanical properties of demineralized bone. J. Biomed. Mater. Res. 67A:742–750, 2003.
Takahashi, Y., and Y. Tabata. Effect of the fiber diameter and porosity of non-woven PET fabrics on the osteogenic differentiation of mesenchymal stem cells. J. Biomater. Sci. Polym. Ed. 15:41–57, 2004.
Takahashi, Y., M. Yamamoto, and Y. Tabata. Enhanced osteoinduction by controlled release of bone morphogenetic protein-2 from biodegradable sponge composed of gelatin and beta-tricalcium phosphate. Biomaterials 26:4856–4865, 2005.
Thompson, M. T., M. C. Berg, I. S. Tobias, M. F. Rubner, and K. J. Van Vliet. Tuning compliance of nanoscale polyelectrolyte multilayers to modulate cell adhesion. Biomaterials 26:6836–6845, 2005.
Toh, Y. C., S. Ng, Y. M. Khong, X. Zhang, Y. J. Zhu, P. C. Lin, C. M. Te, W. X. Sun, and H. R. Yu. Cellular responses to a nanofibrous environment. Nano Today 1:34–43, 2006.
Wang, Y., B. Wang, G. Wang, T. Yin, and Q. Yu. A novel method for preparing electrospun fibers with nano-/micro-scale porous structures. Polym. Bull. 63:259–265, 2009.
Weiner, S., and H. D. Wagner. The material bone: structure mechanical function relations. Annu. Rev. Mater. Sci. 28:271–298, 1998.
Xin, X. J., M. Hussain, and J. J. Mao. Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials 28:316–325, 2007.
Xu, C., R. Inai, M. Kotaki, and S. Ramakrishna. Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tissue Eng. 10:1160–1168, 2004.
Xu, C., R. Inai, M. Kotaki, and S. Ramakrishna. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials 25:877–886, 2004.
Xu, W., X. He, A. Sarvestani, and E. Jabbari. Effect of a low-molecular-weight cross-linkable macromer on electrospinning of poly(lactide-co-glycolide) fibers. J. Biomater. Sci. Polym. Ed. 18:1369–1385, 2007.
Yang, F., R. Murugan, S. Wang, and S. Ramakrishna. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26:2603–2610, 2005.
Yoshimoto, H., Y. M. Shin, H. Terai, and J. P. Vacanti. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24:2077–2082, 2003.
Zhong, S., W. Teo, X. Zhu, R. Beuerman, S. Ramakrishna, and L. Yung. An aligned nanofibrous collagen scaffold by electrospinning and its effects on in vitro fibroblast culture. J. Biomed. Mater. Res. 79A:456–463, 2006.
Zong, X., K. Kim, D. Fang, S. Ran, B. Hsiao, and B. Chu. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43:4403–4412, 2002.
Zong, X. H., H. Bien, C. Y. Chung, L. H. Yin, D. F. Fang, B. S. Hsiao, B. Chu, and E. Entcheva. Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials 26:5330–5338, 2005.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4