A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-010-0106-3 below:

Osteogenic Differentiation of Marrow Stromal Cells on Random and Aligned Electrospun Poly(l-lactide) Nanofibers

References
  1. Baker, S. C., N. Atkin, P. A. Gunning, N. Granville, K. Wilson, D. Wilson, and J. Southgate. Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies. Biomaterials 27:3136–3146, 2006.

    Article  CAS  PubMed  Google Scholar 

  2. Bashur, C. A., L. A. Dahlgren, and A. S. Goldstein. Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(D, L-lactic-co-glycolic acid) meshes. Biomaterials 27:5681–5688, 2006.

    Article  CAS  PubMed  Google Scholar 

  3. Bhattarai, S. R., N. Bhattarai, H. K. Yi, P. H. Hwang, D. I. Cha, and H. Y. Kim. Novel biodegradable electrospun membrane: scaffold for tissue engineering. Biomaterials 25:2595–2602, 2004.

    Article  CAS  PubMed  Google Scholar 

  4. Bini, T., S. Gao, T. Tan, S. Wang, A. Lim, L. Hai, and S. Ramakrishna. Electrospun poly(L-lactide-co-glycolide) biodegradable polymer nanofibre tubes for peripheral nerve regeneration. Nanotechnology 15:1459–1464, 2004.

    Article  CAS  Google Scholar 

  5. Boland, E., G. Wnek, D. Simpson, K. Pawlowski, and G. Bowlin. Tailoring tissue engineering scaffolds using electrostatic processing techniques: a study of poly(glycolic acid) electrospinning. J. Macromol. Sci. Pure Appl. Chem. 38:1231–1243, 2001.

    Article  Google Scholar 

  6. Boudriot, U., R. Dersch, A. Greiner, and J. Wendorff. Electrospinning approaches toward scaffold engineering—a brief overview. Artif. Organs 30:785–792, 2006.

    Article  CAS  PubMed  Google Scholar 

  7. Byrne, E. M., E. Farrell, L. A. McMahon, M. G. Haugh, F. J. O’Brien, V. A. Campbell, P. J. Prendergast, and B. C. O’Connell. Gene expression by marrow stromal cells in a porous collagen-glycosaminoglycan scaffold is affected by pore size and mechanical stimulation. J. Mater. Sci. Mater. Med. 19:3455–3463, 2008.

    Article  CAS  PubMed  Google Scholar 

  8. Chen, J., G. H. Altman, V. Karageorgiou, R. Horan, A. Collette, V. Volloch, T. Colabro, and D. L. Kaplan. Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. J. Biomed. Mater. Res. 67A:559–570, 2003.

    Article  CAS  Google Scholar 

  9. Chew, S. Y., R. Mi, A. Hoke, and K. W. Leong. The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation. Biomaterials 29:653–661, 2008.

    Article  CAS  PubMed  Google Scholar 

  10. Choi, S., and W. L. Murphy. Multifunctional mixed SAMs that promote both cell adhesion and noncovalent DNA immobilization. Langmuir 24:6873–6880, 2008.

    Article  CAS  PubMed  Google Scholar 

  11. Chua, K. N., W. S. Lim, P. C. Zhang, H. F. Lu, J. Wen, S. Ramakrishna, K. W. Leong, and H. Q. Mao. Stable immobilization of rat hepatocyte spheroids on galactosylated nanofiber scaffold. Biomaterials 26:2537–2547, 2005.

    Article  CAS  PubMed  Google Scholar 

  12. Cooper, J. A., H. H. Lu, F. K. Ko, J. W. Freeman, and C. T. Laurencin. Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials 26:1523–1532, 2005.

    Article  CAS  PubMed  Google Scholar 

  13. Delany, A. M., and E. Canalis. Basic fibroblast growth factor destabilizes osteonectin mRNA in osteoblasts. Am. J. Physiol. 274:C734–C740, 1998.

    CAS  PubMed  Google Scholar 

  14. Fantner, G. E., H. Birkedal, J. H. Kindt, T. Hassenkam, J. C. Weaver, J. A. Cutroni, B. L. Bosma, L. Bawazer, M. M. Finch, G. A. Cidade, D. E. Morse, G. D. Stucky, and P. K. Hansma. Influence of the degradation of the organic matrix on the microscopic fracture behavior of trabecular bone. Bone 35:1013–1022, 2004.

    Article  CAS  PubMed  Google Scholar 

  15. Fassett, J. T., D. Tobolt, C. J. Nelsen, J. H. Albrecht, and L. K. Hansen. The role of collagen structure in mitogen stimulation of ERK, cyclin D1 expression, and G(1)-S progression in rat hepatocytes. J. Biol. Chem. 278:31691–31700, 2003.

    Article  CAS  PubMed  Google Scholar 

  16. Franceschi, R. T., G. Xiao, D. Jiang, R. Gopalakrishnan, S. Yang, and E. Reith. Multiple signaling pathways converge on the Cbfa1/Runx2 transcription factor to regulate osteoblast differentiation. Connect. Tissue Res. 44(Suppl 1):109–116, 2003.

    CAS  PubMed  Google Scholar 

  17. Guan, D., Z. Chen, C. Huang, and Y. Lin. Attachment, proliferation and differentiation of BMSCs on gas-jet/electrospun nHAP/PHB fibrous scaffolds. Appl. Surf. Sci. 255:324–327, 2008.

    Article  CAS  Google Scholar 

  18. Gupta, P., C. Elkins, T. Long, and G. Wilkes. Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer 46:4799–4810, 2005.

    CAS  Google Scholar 

  19. He, X., and E. Jabbari. Material properties and cytocompatibility of injectable MMP degradable poly(lactide ethylene oxide fumarate) hydrogel as a carrier for marrow stromal cells. Biomacromolecules 8:780–792, 2007.

    Article  CAS  PubMed  Google Scholar 

  20. He, X. Z., J. Y. Ma, and E. Jabbari. Effect of grafting RGD and BMP-2 protein-derived peptides to a hydrogel substrate on osteogenic differentiation of marrow stromal cells. Langmuir 24:12508–12516, 2008.

    Article  CAS  PubMed  Google Scholar 

  21. Henderson, J. A., X. Z. He, and E. Jabbari. Concurrent differentiation of marrow stromal cells to osteogenic and vasculogenic lineages. Macromol. Biosci. 8:499–507, 2008.

    Article  CAS  PubMed  Google Scholar 

  22. Huang, L., K. Nagapudi, R. Apkarian, and E. Chaikof. Engineered collagen-PEO nanofibers and fabrics. J. Biomater. Sci. Polym. Ed. 12:979–993, 2001.

    Article  CAS  PubMed  Google Scholar 

  23. Huang, Z., Y. Zhang, S. Ramakrishna, and C. Lim. Electrospinning and mechanical characterization of gelatin nanofibers. Polymer 45:5361–5368, 2004.

    Article  CAS  Google Scholar 

  24. Huss, R., C. A. Hoy, and H. J. Deeg. Contact- and growth factor-dependent survival in a canine marrow-derived stromal cell line. Blood 85:2414–2421, 1995.

    CAS  PubMed  Google Scholar 

  25. Jabbari, E., X. Z. He, M. T. Valarmathi, A. S. Sarvestani, and W. J. Xu. Material properties and bone marrow stromal cells response to in situ crosslinkable RGD-functionlized lactide-co-glycolide scaffolds. J. Biomed. Mater. Res. 89A:124–137, 2009.

    CAS  Google Scholar 

  26. Jaiswal, N., S. E. Haynesworth, A. I. Caplan, and S. P. Bruder. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J. Cell Biochem. 64:295–312, 1997.

    Article  CAS  PubMed  Google Scholar 

  27. Kim, H. W., H. H. Lee, and J. C. Knowles. Electrospinning biomedical nanocomposite fibers of hydroxyapaite/poly(lactic acid) for bone regeneration. J. Biomed. Mater. Res. 79A:643–649, 2006.

    Article  CAS  Google Scholar 

  28. Kim, H. W., H. E. Kim, and J. C. Knowles. Production and potential of bioactive glass nanofibers as a next-generation biomaterial. Adv. Funct. Mater. 16:1529–1535, 2006.

    Article  Google Scholar 

  29. Lee, C. H., H. J. Shin, I. H. Cho, Y. M. Kang, I. A. Kim, K. D. Park, and J. W. Shin. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials 26:1261–1270, 2005.

    Article  CAS  PubMed  Google Scholar 

  30. Ma, Z. W., M. Kotaki, R. Inai, and S. Ramakrishna. Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng. 11:101–109, 2005.

    Article  PubMed  Google Scholar 

  31. Ma, Z. W., M. Kotaki, T. Yong, W. He, and S. Ramakrishna. Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials 26:2527–2536, 2005.

    Article  CAS  PubMed  Google Scholar 

  32. Marolt, D., A. Augst, L. E. Freed, C. Vepari, R. Fajardo, N. Patel, M. Gray, M. Farley, D. Kaplan, and G. Vunjak-Novakovic. Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors. Biomaterials 27:6138–6149, 2006.

    Article  CAS  PubMed  Google Scholar 

  33. Matthews, J., G. Wnek, D. Simpson, and G. Bowlin. Electrospinning of collagen nanofibers. Biomacromolecules 3:232–238, 2002.

    Article  CAS  PubMed  Google Scholar 

  34. Mercado, A. E., J. Y. Ma, X. Z. He, and E. Jabbari. Release characteristics and osteogenic activity of recombinant human bone morphogenetic protein-2 grafted to novel self-assembled poly(lactide-co-glycolide fumarate) nanoparticles. J. Control. Release 140:148–156, 2009.

    Article  CAS  PubMed  Google Scholar 

  35. Muller, P. Y., H. Janovjak, A. R. Miserez, and Z. Dobbie. Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques 32:1372–1379, 2002.

    CAS  PubMed  Google Scholar 

  36. Murugan, R., and S. Ramakrishna. Nano-featured scaffolds for tissue engineering: a review of spinning methodologies. Tissue Eng. 12:435–447, 2006.

    Article  CAS  PubMed  Google Scholar 

  37. Ohkawa, K., D. Cha, H. Kim, A. Nishida, and H. Yamamoto. Electrospinning of chitosan. Macromol. Rapid Commun. 25:1600–1605, 2004.

    Article  CAS  Google Scholar 

  38. Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29:e45, 2001.

    Article  CAS  PubMed  Google Scholar 

  39. Pham, Q., U. Sharma, and A. Mikos. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 12:1197–1211, 2006.

    Article  CAS  PubMed  Google Scholar 

  40. Powell, H. M., D. M. Supp, and S. T. Boyce. Influence of electrospun collagen on wound contraction of engineered skin substitutes. Biomaterials 29:834–843, 2008.

    Article  CAS  PubMed  Google Scholar 

  41. Schindler, M., I. Ahmed, J. Kamal, A. Nur-E-Kamal, T. H. Grafe, H. Y. Chung, and S. Meiners. A synthetic nanofibrillar matrix promotes in vivo-like organization and morphogenesis for cells in culture. Biomaterials 26:5624–5631, 2005.

    Article  CAS  PubMed  Google Scholar 

  42. Schneider, A., G. Francius, R. Obeid, P. Schwinte, J. Hemmerle, B. Frisch, P. Schaaf, J. C. Voegel, B. Senger, and C. Picart. Polyelectrolyte multilayers with a tunable Young’s modulus: influence of film stiffness on cell adhesion. Langmuir 22:1193–1200, 2006.

    Article  CAS  PubMed  Google Scholar 

  43. Schneider, O. D., S. Loher, T. J. Brunner, L. Uebersax, M. Simonet, R. N. Grass, H. P. Merkle, and W. J. Stark. Cotton wool-like nanocomposite biomaterials prepared by electrospinning: in vitro bioactivity and osteogenic differentiation of human mesenchymal stem cells. J. Biomed. Mater. Res. Appl. Biomater. 84B:350–362, 2008.

    Article  CAS  Google Scholar 

  44. Shih, Y. R., C. N. Chen, S. W. Tsai, Y. J. Wang, and O. K. Lee. Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells 24:2391–2397, 2006.

    Article  CAS  PubMed  Google Scholar 

  45. Shin, H., C. Lee, I. Cho, Y. Kim, Y. Lee, I. Kim, K. Park, N. Yui, and J. Shin. Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: mechanical stability, degradation and cellular responses under mechanical stimulation in vitro. J. Biomater. Sci. Polymer Ed. 17:103–119, 2006.

    Article  CAS  Google Scholar 

  46. Sombatmankhong, K., N. Sanchavanakit, P. Pavasant, and P. Supaphol. Bone scaffolds from electrospun fiber mats of poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and their blend. Polymer 48:1419–1427, 2007.

    Article  CAS  Google Scholar 

  47. Stein, G. S., J. B. Lian, J. L. Stein, A. J. Van Wijnen, and M. Montecino. Transcriptional control of osteoblast growth and differentiation. Physiol. Rev. 76:593–629, 1996.

    CAS  PubMed  Google Scholar 

  48. Summitt, M. C., and K. D. Reisinger. Characterization of the mechanical properties of demineralized bone. J. Biomed. Mater. Res. 67A:742–750, 2003.

    Article  CAS  Google Scholar 

  49. Takahashi, Y., and Y. Tabata. Effect of the fiber diameter and porosity of non-woven PET fabrics on the osteogenic differentiation of mesenchymal stem cells. J. Biomater. Sci. Polym. Ed. 15:41–57, 2004.

    Article  CAS  PubMed  Google Scholar 

  50. Takahashi, Y., M. Yamamoto, and Y. Tabata. Enhanced osteoinduction by controlled release of bone morphogenetic protein-2 from biodegradable sponge composed of gelatin and beta-tricalcium phosphate. Biomaterials 26:4856–4865, 2005.

    Article  CAS  PubMed  Google Scholar 

  51. Thompson, M. T., M. C. Berg, I. S. Tobias, M. F. Rubner, and K. J. Van Vliet. Tuning compliance of nanoscale polyelectrolyte multilayers to modulate cell adhesion. Biomaterials 26:6836–6845, 2005.

    Article  CAS  PubMed  Google Scholar 

  52. Toh, Y. C., S. Ng, Y. M. Khong, X. Zhang, Y. J. Zhu, P. C. Lin, C. M. Te, W. X. Sun, and H. R. Yu. Cellular responses to a nanofibrous environment. Nano Today 1:34–43, 2006.

    Article  Google Scholar 

  53. Wang, Y., B. Wang, G. Wang, T. Yin, and Q. Yu. A novel method for preparing electrospun fibers with nano-/micro-scale porous structures. Polym. Bull. 63:259–265, 2009.

    Article  CAS  Google Scholar 

  54. Weiner, S., and H. D. Wagner. The material bone: structure mechanical function relations. Annu. Rev. Mater. Sci. 28:271–298, 1998.

    Article  CAS  Google Scholar 

  55. Xin, X. J., M. Hussain, and J. J. Mao. Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials 28:316–325, 2007.

    Article  CAS  PubMed  Google Scholar 

  56. Xu, C., R. Inai, M. Kotaki, and S. Ramakrishna. Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tissue Eng. 10:1160–1168, 2004.

    CAS  PubMed  Google Scholar 

  57. Xu, C., R. Inai, M. Kotaki, and S. Ramakrishna. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials 25:877–886, 2004.

    Article  CAS  PubMed  Google Scholar 

  58. Xu, W., X. He, A. Sarvestani, and E. Jabbari. Effect of a low-molecular-weight cross-linkable macromer on electrospinning of poly(lactide-co-glycolide) fibers. J. Biomater. Sci. Polym. Ed. 18:1369–1385, 2007.

    Article  CAS  PubMed  Google Scholar 

  59. Yang, F., R. Murugan, S. Wang, and S. Ramakrishna. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26:2603–2610, 2005.

    Article  CAS  PubMed  Google Scholar 

  60. Yoshimoto, H., Y. M. Shin, H. Terai, and J. P. Vacanti. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24:2077–2082, 2003.

    Article  CAS  PubMed  Google Scholar 

  61. Zhong, S., W. Teo, X. Zhu, R. Beuerman, S. Ramakrishna, and L. Yung. An aligned nanofibrous collagen scaffold by electrospinning and its effects on in vitro fibroblast culture. J. Biomed. Mater. Res. 79A:456–463, 2006.

    Article  CAS  Google Scholar 

  62. Zong, X., K. Kim, D. Fang, S. Ran, B. Hsiao, and B. Chu. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43:4403–4412, 2002.

    Article  CAS  Google Scholar 

  63. Zong, X. H., H. Bien, C. Y. Chung, L. H. Yin, D. F. Fang, B. S. Hsiao, B. Chu, and E. Entcheva. Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials 26:5330–5338, 2005.

    Article  CAS  PubMed  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4