Aliev, R. R., and A. V. Panfilov. A simple two-variable model of cardiac excitation. Chaos, Solitions and Fractals 7(3):293–301, 1996.
Artebrant, R., J. Sundnes, O. Skavhaug, and A. Tveito. A second order method of Rush–Larsen type. Technical Report, Simula Research Laboratory, 2008.
Ascher, U. M., and L. R. Petzold. Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 1998.
Atkinson, K., and W. Han. Elementary Numerical Analysis, 3rd ed. Hoboken, NJ: John Wiley & Sons Ltd, 2005.
Beeler, G. W., and H. Reuter. Reconstruction of the action potential of ventricular myocardial fibres. J. Physiol. 268(1):177–210, 1977.
Bischof, C. H., H. M. Bücker, and A. Vehreschild. A macro language for derivative definition in ADiMat. In: Automatic Differentiation: Applications, Theory, and Implementations, vol. 50, Lecture Notes in Computer Science Engineering. Berlin: Springer, 2006, pp. 181–188.
Bondarenko, V. E., G. P. Szigeti, G. C. L. Bett, S. J. Kim, and R. L. Rasmusson. Computer model of action potential of mouse ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 287(3):H1378–H1403, 2004.
Burkardt, J. http://orion.math.iastate.edu/burkardt/math2071/be_newton.m.
Butcher, J. C. Order, stepsize and stiffness switching. Computing 44(3):209–220, 1990.
Courtemanche, M., R. J. Ramirez, and S. Nattel. Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am. J. Physiol. 275(1):H301–H321, 1998.
Demir, S. S., J. W. Clark, W. R. Giles. Parasympathetic modulation of sinoatrial node pacemaker activity in rabbit heart: a unifying model. Am. J. Physiol. 276(6 Pt 2):H2221–H2244, 1999.
Demir, S. S., J. W. Clark, C. R. Murphey, and W. R. Giles. A mathematical model of a rabbit sinoatrial node cell. Am. J. Physiol. 266(3 Pt 1):C832–C852, 1994.
DiFrancesco, D., and D. Noble. A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 307(1133):353–398, 1985.
Dokos, S., B. Celler, and N. Lovell. Ion currents underlying sinoatrial node pacemaker activity: a new single cell mathematical model. J. Theor. Biol. 181(3):245–272, 1996.
Faber, G. M., and Y. Rudy. Action potential and contractility changes in [Na(+)](i) overloaded cardiac myocytes: a simulation study. Biophys. J. 78(5):2392–2404, 2000.
FitzHugh, R. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6):445–466, 1961.
Fox, J. J., J. L. McHarg, and R. F. Gilmour. Ionic mechanism of electrical alternans. Am. J. Physiol. Heart Circ. Physiol. 282(2):H516–H530, 2002.
Hairer, E., and G. Wanner. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd ed. Berlin: Springer-Verlag, 1996.
Hilgemann, D. W., and D. Noble. Excitation-contraction coupling and extracellular calcium transients in rabbit atrium: reconstruction of basic cellular mechanisms. Proc. R. Soc. Lond. B Biol. Sci. 230(1259):163–205, 1987.
Hodgkin, A., and A. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond) 117(4):500–544, 1952.
Hund, T.J., and Y. Rudy. Rate dependence and regulation of action potential and calcium transient in a canine cardiac ventricular cell model. Circulation 110(20):3168–3174, 2004.
Jafri, M. S., J. J.Rice, and R. L. Winslow. Cardiac Ca2+ dynamics: the roles of ryanodine receptor adaptation and sarcoplasmic reticulum load. Biophys. J. 74(3):1149–1168, 1998.
Kogan, B. Y., W. J. Karplus, B. S. Billett, A. Pang, H. S. Karagueuzian, and S. S. Kahn. The simplified FitzHugh–Nagumo model with action potential duration restitution: effects on 2-D wave propagation. Physica D 50:327–340, 1991.
Lambert, J. D. Numerical Methods for Ordinary Differential Systems: The Initial Value Problem. Chichester: John Wiley & Sons Ltd., 1991.
Lloyd, C. M., J. R. Lawson, P. J. Hunter, and P. F. Nielsen. The CellML model repository. Bioinformatics 24(18):2122–2123, 2008.
Luo, C., and Y. Rudy. A model of ventricular cardiac action potential. Circ. Res. 68(6):1501–1526, 1991.
Maclachlan, M. C., J. Sundnes, and R. J. Spiteri. A comparison of non-standard solvers for ODEs describing cellular reactions in the heart. Comput. Methods Biomech. Biomed. Eng. 10(5):317–326, 2007.
Maleckar, M. M., J. L. Greenstein, N. A. Trayanova, and W. R. Giles. Mathematical simulations of ligand-gated and cell-type specific effects on the action potential of human atrium. Prog. Biophys. Mol. Biol. 98(2–3):161–170, 2008.
MathWorks Inc., The: Matlab R2008b. http://www.mathworks.com/, 2008.
McAllister, R. E., D. Noble, and R. W. Tsien. Reconstruction of the electrical activity of cardiac Purkinje fibres. J. Physiol. 251(1):1–59, 1975.
Nagumo, J., S. Arimoto, and S. Yoshizawa. An active pulse transmission line simulating nerve axon. Proc. IRE 50(10):2061–2070, 1962.
Noble, D. A modification of the Hodgkin–Huxley equations applicable to Purkinje fibre action and pace-maker potentials. J. Physiol. 160(NIL):317–352, 1962.
Noble, D., and S. J. Noble. A model of sino-atrial node electrical activity based on a modification of the DiFrancesco-Noble (1984) equations. Proc. R. Soc. Lond. B Biol. Sci. 222(1228):295–304, 1984.
Noble, D., S. J. Noble, G. C. Bett, Y. E. Earm, W. K. Ho, and I. K. So. The role of sodium-calcium exchange during the cardiac action potential. Ann. N. Y. Acad. Sci. 639(NIL):334–353, 1991.
Noble, D., A. Varghese, P. Kohl, and P. Noble. Improved guinea-pig ventricular cell model incorporating a diadic space, IKr and IKs, and length- and tension-dependent processes. Can. J. Cardiol. 14(1):123–134, 1998.
Nygren, A., C. Fiset, L. Firek, J. W. Clark, D. S. Lindblad, R. B. Clark, and W. R. Giles. Mathematical model of an adult human atrial cell: the role of K+ currents in repolarization. Circ. Res. 82(1):63–81, 1998.
Pandit, S. V., R. B. Clark, W. R. Giles, and S. S. Demir. A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes. Biophys. J. 81(6):3029–3051, 2001.
Pandit, S. V., W. R. Giles, and S. S. Demir. A mathematical model of the electrophysiological alterations in rat ventricular myocytes in type-I diabetes. Biophys. J. 84(2 Pt 1):832–841, 2003.
Petzold, L. Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations. SIAM J. Sci. Stat. Comput. 4(1):137–148, 1983.
Puglisi, J. L., and D. M. Bers. Labheart: an interactive computer model of rabbit ventricular myocyte ion channels and ca transport. Am. J. Physiol. Cell Physiol. 281(6):C2049–C2060, 2001.
Pullan, A. J., M. J. Buist, and L. K. Cheng. Mathematically Modelling the Electrical Activity of the Heart: From Cell to Body Surface and Back Again. New Jersey: World Scientific, 2005.
Rogers, J., and A. McCulloch. A collocation–galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Eng. 41(8):743–757, 1994.
Rush, S., and H. Larsen. A practical algorithm for solving dynamic membrane equations. IEEE Trans. Biomed. Eng. BME-25(4):389–392, 1978.
Sakmann, B. F., A. J. Spindler, S. M. Bryant, K. W. Linz, and D. Noble. Distribution of a persistent sodium current across the ventricular wall in guinea pigs. Circ. Res. 87(10):910–914, 2000.
Shampine, L. F. Type-insensitive ODE codes based on extrapolation methods. SIAM J. Sci. Stat. Comput. 4(4):635–644, 1983.
Shampine, L. F. Stiffness and the automatic selection of ode codes. J. Comput. Phys. 54:74–86, 1984.
Spiteri, R. J., and R. C. Dean. On the performance of an implicit-explicit Runge–Kutta method in models of cardiac electrical activity. IEEE Trans. Biomed. Eng. 55(5):1488–1495, 2008.
Spiteri, R. J., and R. C. Dean. Stiffness analysis of cardiac electrophysiological models. Technical Report, Department of Computer Science, University of Saskatchewan, 2009.
Spiteri, R. J., and M. C. MacLachlan. An efficient non-standard finite difference scheme for an ionic model of cardiac action potentials. J. Differ. Equ. Appl. 9(12):1069–1081, 2003.
Stewart, P., O. V. Aslanidi, D. Noble, P. J. Noble, M. R. Boyett, and H. Zhang. Mathematical models of the electrical action potential of Purkinje fibre cells. Philos. Transact. A Math. Phys. Eng. Sci. 367(1896):2225–2255, 2009.
Sundnes, J., R. Artebrant, O. Skavhaug, and A. Tveito. A second-order algorithm for solving dynamic cell membrane equations. IEEE Trans. Biomed. Eng. 56(10):2546–2548, 2009.
Sundnes, J., G. T. Lines, X. Cai, B. F. Nielsen, K. A. Mardal, and A. Tveito. Computing the Electrical Activity in the Heart. Berlin: Springer-Verlag, 2006.
Ten Tusscher, K. H. W. J., D. Noble, P. J. Noble, and A. V. Panfilov. A model for human ventricular tissue. Am. J. Physiol. Heart Circ. Physiol. 286(4):H1573–H189, 2004.
Ten Tusscher, K. H. W. J., and A. V. Panfilov. Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions. Phys. Med. Biol. 51(23):6141–6156, 2006.
Van Capelle, F. J. L., and D. Durrer. Computer simulation of arrhythmias in a network of coupled excitable elements. Circ. Res. 47:454–466, 1980.
Vigmond, E. J., R. W. dos Santos, A. J. Prassl, M. Deo, and G. Plank. Solvers for the cardiac bidomain equations. Prog. Biophys. Mol. Biol. 96(1–3):3–18, 2008.
Wang, L. J., and E. A. Sobie. Mathematical model of the neonatal mouse ventricular action potential. Am. J. Physiol. Heart Circ. Physiol. 294(6):H2565–H2575, 2008.
Winslow, R. L., J. Rice, S. Jafri, E. Marbán, and B. O’Rourke. Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, II model studies. Circ. Res. 84(5):571–586, 1999.
Ying, W., D. J. Rose, and C. S. Henriquez. Efficient fully implicit time integration methods for modeling cardiac dynamics. IEEE Trans. Biomed. Eng. 55(12):2701–2711, 2008.
Zhang, H., A. V. Holden, I. Kodama, H. Honjo, M. Lei, T. Varghese, and M. R. Boyett. Mathematical models of action potentials in the periphery and center of the rabbit sinoatrial node. Am. J. Physiol. Heart Circ. Physiol. 279(1):H397–H421, 2000.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4