A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-010-0070-y below:

Cavitation Phenomena in Mechanical Heart Valves: Studied by Using a Physical Impinging Rod System

References
  1. Avrahami, I., M. Rosenfeld, S. Einav, M. Eichler, and H. Reul. Can vortices in the flow across mechanical heart valves contribute to cavitation? Med. Biol. Eng. Comput. 38:93–97, 2000.

    Article  CAS  PubMed  Google Scholar 

  2. Bluestein, D., S. Einav, and N. H. C. Hwang. A squeeze flow phenomenon at the closing of a bileaflet mechanical heart valve prosthesis. J. Biomech. 27(11):1369–1378, 1994.

    Article  CAS  PubMed  Google Scholar 

  3. Bokros, J. C., L. D. LaGrange, and F. J. Schoen. Control of structure of carbon for use in bioengineering. In: Chemistry and Physics of Carbon, edited by P. L. Walker. New York: Marcel Dekker, 1972, pp. 103–171.

    Google Scholar 

  4. Chandran, K. B. Heart valve prostheses: in vitro flow dynamics. In: Encyclopedia of Medical Devices and Instrumentation, vol. 3, edited by G. W. John. New York: Wiley, 1988, pp. 1475–1483.

    Google Scholar 

  5. Chandran, K. B., and S. Aluri. Mechanical valve closing dynamics: relationship between velocity of closing, pressure transients and cavitation initiation. Ann. Biomed. Eng. 25:926–938, 1997.

    CAS  PubMed  Google Scholar 

  6. Cheng, R., Y. G. Lai, and K. B. Chandran. Two-dimensional fluid-structure interaction simulation of bileaflet mechanical heart valve flow dynamics. J. Heart Valve Dis. 12:772–780, 2003.

    PubMed  Google Scholar 

  7. Cheng, R., Y. G. Lai, and K. B. Chandran. Three-dimensional fluid-structure interaction simulation of bileaflet mechanical heart valve flow dynamics. Ann. Biomed. Eng. 32:1471–1483, 2004.

    Article  PubMed  Google Scholar 

  8. Garrsion, L. A., T. C. Lamson, S. Deutsch, D. B. Geselowitz, R. P. Gaumond, and J. M. Tarbell. An in vitro investigation of prosthetic heart valve cavitation in blood. J. Heart. Valve Dis. 3(Suppl. I):S8–S24, 1994.

    Google Scholar 

  9. Graf, T., H. Reul, C. Detlefs, R. Wilmes, and G. Rau. Causes and formation of cavitation in mechanical heart valves. J. Heart Valve Dis. 3(Suppl. I):S49–S64, 1994.

    PubMed  Google Scholar 

  10. Gross, J. M., G. X. Guo, and N. H. C. Hwang. Venturi pressure cannot cause cavitation in mechanical heart valve prostheses. ASAIO Trans. 37(3):M357–M358, 1991.

    CAS  PubMed  Google Scholar 

  11. Guo, X., S. K. Wang, C. W. Liu, and N. H. C. Hwang. A new LDA system utilizing the optic-electro-hybird feedback technique. Measure. Sci. Tech. 1:265–271, 1990.

    Article  Google Scholar 

  12. He, Z., B. Xi, K. Zhu, and N. H. C. Hwang. Mechanical heart valve cavitation: investigation using tilting disk valve model. J. Heart Valve Dis. 10:666–674, 2001.

    CAS  PubMed  Google Scholar 

  13. Herberston, L. H. R., K. B. Manning, C. M. Haggerty, A. A. Fontaine, and S. Deutsch. Quantifying the upstream flow fields of the St. Jude Medical mechanical heart valve. ASAIO J. 52(2):52A, 2006.

    Google Scholar 

  14. Hwang, N. H. C. Cavitation potential of pyrolytic carbon heart valve prostheses: a review and current status. J. Heart Valve Dis. 7:140–150, 1998.

    CAS  PubMed  Google Scholar 

  15. Johansen, P. Mechanical heart valve cavitation review. Expert Rev. Med. Devices 1(1):95–104, 2004.

    Article  PubMed  Google Scholar 

  16. Klepetko, W., A. Moritz, G. Mlzoch, H. Schurawitzki, E. Domanis, and E. J. Wolner. Leaflet fracture in Edwards Duromedics bileaflet valves. J. Thorac. Cardiovas. Surg. 97:90–94, 1989.

    CAS  Google Scholar 

  17. Lai, Y. G., K. B. Chandran, and J. Lemmon. A numerical simulation of mechanical heart valve closure fluid dynamics. J. Biomech. 35:881–892, 2002.

    Article  PubMed  Google Scholar 

  18. Lamson, T. C., G. Rosenberg, D. B. Geselowitz, S. Deutsch, D. R. Strinebring, J. A. Frangos, and J. M. Tarbell. Relative blood damage in the three phases of a prosthetic heart valve flow cycle. ASAIO J. 39:626–633, 1993.

    Article  Google Scholar 

  19. Lee, C. S., and K. B. Chandran. Instantaneous back flow through peripheral clearance of Medtronic hall tilting disc valve at the moment of closure. Ann. Biomed. Eng. 22:371–380, 1994.

    Article  CAS  PubMed  Google Scholar 

  20. Lee, C. S., K. B. Chandran, and L. D. Chen. Cavitation dynamics of mechanical heart valve prostheses. Artif. Organs 18(10):758–767, 1994.

    Article  CAS  PubMed  Google Scholar 

  21. Lee, H., Y. Taenaka, and S. Kitamura. Mechanism for cavitation in the mechanical heart valve with an artificial heart: nuclei and viscosity dependence. Artif. Organs 29(1):41–46, 2005.

    Article  PubMed  Google Scholar 

  22. Lee, H., Y. Taenaka, and S. Kitamura. Mechanisms of mechanical heart valve cavitation in an electrohydraulic total artificial heart. ASAIO J. 51(3):208–213, 2005.

    Article  PubMed  Google Scholar 

  23. Lee, H., T. Tsukiya, A. Homma, T. Kamimura, Y. Takewa, E. Tatsumi, Y. Taenaka, H. Takano, and S. Kitamura. Observation of cavitation bubbles in monoleaflet mechanical heart valves. J. Artif. Organs 7(3):121–127, 2004.

    Article  PubMed  Google Scholar 

  24. Leuer, L. In vitro evaluation of drive parameters and valve selection for total artificial heart. In: Annual Meeting of Canadian Council of Cardiovascular Perfusionists, Ottawa, Ontario, Canada, 1986.

  25. Li, C. P., P. C. Lu, J. S. Liu, C. W. Lo, and N. H. C. Hwang. Role of vortices in cavitation formation in the flow across a mechanical heart valve. J. Heart Valve Dis. 17(4):435–445, 2008.

    PubMed  Google Scholar 

  26. Lim, W. L., Y. T. Chew, H. T. Low, and W. L. Foo. Cavitation phenomena in mechanical heart valves: the role of squeeze flow velocity and contact area on cavitation initiation between two impinging rods. J. Biomech. 36(9):1269–1280, 2003.

    Article  CAS  PubMed  Google Scholar 

  27. Lo, C. W., J. S. Liu, C. P. Li, P. C. Lu, and N. H. C. Hwang. Cavitation behavior observed in three monoleaflet mechanical heart valves under accelerated testing conditions. ASAIO J. 54(2):163–171, 2008.

    Article  PubMed  Google Scholar 

  28. Lo, C. W., P. C. Lu, J. S. Liu, C. P. Li, and N. H. C. Hwang. Squeeze flow measurements in mechanical heart valves. ASAIO J. 54(2):156–162, 2008.

    Article  PubMed  Google Scholar 

  29. Makhijani, V. B., H. Q. Yang, A. K. Singhal, and N. H. C. Hwang. An experimental-computational analysis of mechanical heart valve: effects of leakage squeezing and rebound. J. Heart Valve Dis. 3(Suppl. I):S35–S48, 1994.

    PubMed  Google Scholar 

  30. Manning, K. B., L. H. Herberston, A. A. Fontaine, and S. Deutsch. A detailed fluid mechanics study of tilting disk mechanical heart valve closure and the implications to blood damage. J. Biomech. Eng. 130:041001-1–041001-8, 2008.

    Article  Google Scholar 

  31. Manning, K. B., V. Kini, A. A. Fontaine, S. Deutsch, and J. M. Tarbell. Regurgitant flow field characteristics of the St. Jude bileaflet mechanical heart valve under physiologic pulsatile flow using particle image velocimetry. Artif. Organs 27(9):840–846, 2003.

    Article  PubMed  Google Scholar 

  32. Maymir, J. C., S. Deutsch, R. S. Meyer, D. B. Geselowitz, and J. M. Tarbell. Mean velocity and Reynolds stress measurements in the regurgitant jets of tilting disk heart valves in an artificial heart environment. Ann. Biomed. Eng. 26:146–156, 1998.

    Article  CAS  PubMed  Google Scholar 

  33. Quijano, R. C. Edwards Duromedics dysfunctional analysis. In: Proceeding of Cardio Stimulation: 6th International Congress, Monte Carlo, Monaco, 1988.

  34. Rood, E. P. Review of mechanisms of cavitation inception. J. Fluids Eng. 113:163–175, 1991.

    Article  Google Scholar 

  35. Shu, M. C. S., L. H. Leuer, T. L. Armitage, T. E. Schneider, and D. R. Christiansen. In vitro observations of mechanical heart valve cavitation. J. Heart Valve Dis. 3(Suppl. I):S85–S93, 1994.

    PubMed  Google Scholar 

  36. Tokuno, T. Cavitation Inception on Decelerating Surfaces. PhD thesis, University of Rice, 1978.

  37. Walker, W. F. Cavitation in pulsatile blood pumps. ASME Adv. Bioeng. 1:148–150, 1974.

    Google Scholar 

  38. Wu, Z. J. Cavitation in Mechanical Heart Valve Prostheses: An In Vitro Study. PhD thesis, University of Miami, 1996.

  39. Young, F. R. Cavitation. London, UK: McGraw-Hill Book Company, 1989.

  40. Zhang, P., J. H. Yeo, and N. H. C. Hwang. Development of squeeze flow in mechanical heart valve: a particle image velocimetry investigation. ASAIO J. 52:301–397, 2006.

    Article  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4