Ando, J., and K. Yamamoto. Vascular mechanobiology: endothelial cell responses of fluid shear stress. Circ. J. 73:1983–1992, 2009.
Bagchi, P., P. C. Johnson, and A. S. Popel. Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow. J. Biomech. Eng. 127:1070–1080, 2005.
Barber, J. O., J. P. Alberding, J. M. Restrepo, and T. W. Secomb. Simulated two-dimensional red blood cell motion, deformation, and partitioning in microvessel bifurcations. Ann. Biomed. Eng. 36:1690–1698, 2008.
Bhatnagar, P., E. Gross, and K. Krook. A model for collisional processes in gases I: small amplitude processes in charged and neutral one-component system. Phys. Rev. B 94(3):511–525, 1954.
Cengel, Y. A., and J. M. Cimbala. Fluid Mechanics: Fundamentals and Applications, 2nd edn. New York, NY: McGraw Hill, 2010.
Damiano, E. R., D. Long, and M. L. Smith. Estimation of viscosity profiles using velocimetry data from parallel flows of linearly viscous fluids: application to microvascular haemodynamics. J. Fluid Mech. 512:1–19, 2004.
Dewey Jr., C. F., S. R. Bussolari, M. A. Gimbrone Jr., and P. F. Davies. The dynamic response of vascular endothelial cells to fluid shear stress. J. Biomech. Eng. 103:177–185, 1981.
Dupin, M. M. M. M., I. Halliday, C. M. Care, L. Alboul, and L. L. Munn. Modeling the flow of dense suspensions of deformable particles in three dimensions. Phys. Rev. E 75:066707, 2007.
Evans, E. A. Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipette aspiration tests. Biophys. J. 43:27–30, 1983.
Feng, Z., and E. E. Michaelides. The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problem. J. Comput. Phys. 195:602–628, 2004.
Han, Y. F., S. Weinbaum, J. A. E. Spaan, and H. Vink. Large-deformation analysis of the elastic recoil of fibre layers in a brinkman medium with application to the endothelial glycocalyx. J. Fluid Mech. 554:217–235, 2006.
Hochmuth, R. M., and R. E. Waugh. Erythrocyte membrane elasticity and viscosity. Annu. Rev. Psychol. 49:209–219, 1987.
Kim, M. B., and I. H. Sarelius. Distributions of wall shear stress in venular convergences of mouse cremaster muscle. Microcirculation 10:167–178, 2003.
Langille, B. L., and S. L. Adamson. Relationship between blood flow direction and endothelial cell orientation at arterial branch sites in rabbits and mice. Circ. Res. 48:481–488, 1981.
Lipowsky, H. H., S. Kovalcheck, and B. W. Zweifach. The distribution of blood rheological parameters in the microvasculature of cat mesentery. Circ. Res. 43:738–749, 1978.
Malek, A. M., G. H. Gibbons, V. J. Dzau, and S. Izum. Fluid shear stress differentially modulates expression of genes encoding basic fibroblast growth factor and platelet-derived growth factor b chain in vascular endothelium. J. Clin. Invest. 92:2013–2021, 1993.
N’Dri, N. A., W. Shyy, and R. Tran-Son-Tay. Computational modeling of cell adhesion and movement using a continuum-kinetics approach. Biophys. J. 85:2273–2286, 2003.
Nerem, R. M., and M. J. Levesque. Vascular endothelial mophology as an indicator of the pattern of blood flow. J. Biomech. Eng. 103:172–177, 1981.
Ohno, M., G. H. Gibbons, V. J. Dzau, and J. P. Cooke. Shear stress elevates endothelial cGMP: role of a potassium channel and G protein coupling. Circulation 88:193–197, 1993.
Okahara, K., J. Kambayashi, T. Ohnishi, Y. Fujiwara, T. Kawasaki, and M. Monden. Shear stress induces expression of cnp gene in human endothelial cells. FEBS Lett. 373:108–110, 1995.
Peskin, C. S. Numerical analysis of blood flow in the heart. J. Comput. Phys. 25(3):220–252, 1977.
Popel, A. S., and P. C. Johnson. Microcirculation and hemorheology. Annu. Rev. Fluid Mech. 37:43–69, 2005.
Pozrikidis, C. Effect of membrane bending stiffness on the deformation of capusles in simple shear flow. J. Fluid Mech. 440:269–291, 2001.
Pries, A. R., and T. W. Secomb. Microvascular blood viscosity in vivo and the endothelial surface layer. Am. J. Physiol. Heart Circ. Physiol. 289:H2657–H2664, 2005.
Reitsma, S., D. W. Slaaf, H. Vink, M. A. M. J. van Zandvoort, and M. G. A. oude Egbrink. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Archiv.-Eur. J. Physiol. 454:345–359, 2007.
Reneman, R. S., T. Arts, and A. P. G. Hoeks. Wall shear stress—an important determinant of endothelial cell function and structure—in the arterial system in vivo. Vescular Res. 43:251–269, 2006.
Sakai, H., A. Sato, N. Okuda, S. Takeoka, N. Maeda, and E. Tsuchida. Peculiar flow patterns of RBCs suspended in viscous fluids and perfused through a narrow tube (25 μm). Am. J. Physiol. Heart Circ. Physiol. 297:H583–H589, 2009.
Sangani, A. S., and A. Acrivos. Slow flow past periodic arrays of cylinders with application to heat–transfer. Int. J. Multiphase Flow 8:193–206, 1982.
Schmid-Schobein, G. W., S. Usami, R. Skalak, and S. Chien. Interaction of leukocytes and erythrocytes in capillary and postcapillary vessels. Microvasc. Res. 19:45–70, 1980.
Secomb, T. W., R. Hsu, and A. R. Pries. A model for red blood cell motion in glycocalyx-lined capillaries. Am. J. Physiol. Heart Circ. Physiol. 274:H1016–H1022, 1998.
Secomb, T. W., R. Hsu, and A. R. Pries. Effect of the endothelial surface layer on transmission of fluid shear stress to endothelial cells. Biorheology 38:143–150, 2001.
Secomb, T. W., R. Hsu, and A. R. Pries. Motion of red blood cells in a capillary with an endothelial surface layer: effect of flow velocity. Am. J. Physiol. Heart Circ. Physiol. 281:H629–H636, 2001.
Secomb, T. W., R. Hsu, and A. P. Pries. Blood flow and red blood cell deformation in nonuniform capillaries: effects of the endothelial surface layer. Microcirculation 9:189, 2002.
Secomb, T. W., B. Styp-Rekowska, and A. R. Pries. Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels. Ann. Biomed. Eng. 35:755–765, 2007.
Skalak, R., and S. Chien. Handbook of Bioengineering. New York, NY: McGraw-Hill, 1987.
Song, J., W. Gu, N. Futai, K. A. Warner, J. E. Nor, and S. Takayama. Computer-controlled microcirculatory support system for endothelial cell culture and shearing. Anal. Chem. 77:3993–3999, 2005.
Stoltz, J. F., M. Singh, and P. Riha. Hemorheology in Practice. Amsterbam, Netherlands: IOS Press, 1999.
Succi, S. The Lattice Boltzmann Equation. Oxford: Oxford Univ. Press, 2001.
Tryggvason, G., B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, and Y.-J. Jan. A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169:708–759, 2001.
Udaykumar, H. S., H.-C. Kan, W. Shyy, and R. Tran-Son-Tay. Multiphase dynamics in arbitrary geometries on fixed Cartesian grids. J. Comput. Phys. 137:366–405, 1997.
Vink, H., B. R. Duling, and J. A. E. Spaan. Mechanical properties of the endothelial surface layer. FASEB J. 13:A11, 1999.
Waugh, R. E., and R. M. Hochmuth. Chapter 60: mechanics and deformability of hematocytes. In: Biomedical Engineering Fundamentals, 3rd edn., edited by J. D. Bronzino. Boca Raton, FL: CRC, 2006, pp. 60–63.
Weinbaum, S., X. Zhang, Y. Han, H. Vink, and S. C. Cowin. Mechanotransduction and flow across the endothelial glycocalyx. Proc. Natl Acad. Sci. 100:7988–7995, 2003.
Zhang, J., P. C. Johnson, and A. S. Popel. An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows. Phys. Biol. 4:285–295, 2007.
Zhang, J., P. C. Johnson, and A. S. Popel. Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method. J. Biomech. 41:47–55, 2008.
Zhang, J., P. C. Johnson, and A. S. Popel. Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows. Microvasc. Res. 77:265–272, 2009.
Zhang, J., and D. Y. Kwok. Contact line and contact angle dynamics in superhydrophobic channels. Langmuir 22:4998–5004, 2006.
Zhang, J., and D. Y. Kwok. Pressure boundary condition of the lattice Boltzmann method for fully developed periodic flows. Phys. Rev. E 73:047702, 2006.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4