A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-010-0015-5 below:

Mechanical Interactions of Mouse Mammary Gland Cells with Collagen in a Three-Dimensional Construct

  • Balaban, N. Q., et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3:466–472, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Beebe, D. J., G. A. Mensing, and G. M. Walker. Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 4:261–286, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Bissell, M. J., D. C. Radisky, A. Rizki, V. M. Weaver, and O. W. Petersen. The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation 70:537–546, 2002.

    Article  PubMed  Google Scholar 

  • Bloom, R. J., J. P. George, A. Celedon, S. X. Sun, and D. Wirtz. Mapping local matrix remodeling induced by a migrating tumor cell using three-dimensional multiple-particle tracking. Biophys. J. 95:4077–4088, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Boyd, N. F., H. M. Jensen, G. Cooke, and H. L. Han. Relationship between mammographic and histological risk-factors for breast-cancer. J. Natl. Cancer Inst. 84:1170–1179, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Boyd, N. F., G. A. Lockwood, J. W. Byng, D. L. Tritchler, and M. J. Yaffe. Mammographic densities and breast cancer risk. Cancer Epidemiol. Biomarkers Prev. 7:1133–1144, 1998.

    PubMed  CAS  Google Scholar 

  • Burton, K., and D. L. Taylor. Traction forces of cytokinesis measured with optically modified elastic substrata. Nature 385:450–454, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Butler, J. P., I. M. Tolic-Norrelykke, B. Fabry, and J. J. Fredberg. Traction fields, moments, and strain energy that cells exert on their surroundings. Am. J. Physiol. Cell Physiol. 282:C595–C605, 2002.

    PubMed  CAS  Google Scholar 

  • Cukierman, E., R. Pankov, D. R. Stevens, and K. M. Yamada. Taking cell-matrix adhesions to the third dimension. Science 294:1708–1712, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Delvoye, P., P. Wiliquet, J. L. Leveque, B. V. Nusgens, and C. M. Lapiere. Measurement of mechanical forces generated by skin fibroblasts embedded in a 3-dimensional collagen gel. J. Invest. Dermatol. 97:898–902, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Dembo, M., and Y. L. Wang. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76:2307–2316, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Discher, D. E., P. Janmey, and Y. L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez, P., and A. R. Bausch. The compaction of gels by cells: a case of collective mechanical activity. Integr. Biol. 1:252–259, 2009.

    Article  CAS  Google Scholar 

  • Flanagan, L. A., Y. E. Ju, B. Marg, M. Osterfield, and P. A. Janmey. Neurite branching on deformable substrates. Neuroreport 13:2411–2415, 2002.

    Article  PubMed  Google Scholar 

  • Friedl, P., and E. B. Brocker. The biology of cell locomotion within three-dimensional extracellular matrix. Cell. Mol. Life Sci. 57:41–64, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Galbraith, C. G., and M. P. Sheetz. A micromachined device provides a new bend on fibroblast traction forces. Proc. Natl Acad. Sci. USA 94:9114–9118, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh, K., et al. Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties. Biomaterials 28:671–679, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Grinnell, F. Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol. 13:264–269, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Harris, A. K., P. Wild, and D. Stopak. Silicone-rubber substrata—new wrinkle in the study of cell locomotion. Science 208:177–179, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, H. M., and F. Grinnell. Cell-matrix entanglement and mechanical anchorage of fibroblasts in three-dimensional collagen matrices. Mol. Biol. Cell 16:5070–5076, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Jo, B. H., L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe. Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. J. Microelectromech. Syst. 9:76–81, 2000.

    Article  CAS  Google Scholar 

  • Karamichos, D., R. A. Brown, and V. Mudera. Collagen stiffness regulates cellular contraction and matrix remodeling gene expression. J. Biomed. Mater. Res. A 83A:887–894, 2007.

    Article  CAS  Google Scholar 

  • Keely, P. J., J. E. Wu, and S. A. Santoro. The spatial and temporal expression of the alpha-2-beta-1 integrin and its ligands, collagen-I, collagen-IV, and laminin, suggest important roles in mouse mammary morphogenesis. Differentiation 59:1–13, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, S., et al. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys. J. 90:3762–3773, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J., M. Leonard, T. Oliver, A. Ishihara, and K. Jacobson. Traction forces generated by locomoting keratocytes. J. Cell Biol. 127:1957–1964, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Legant, W. R., et al. Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues. Proc. Natl Acad. Sci. USA 106:10097–10102, 2009.

    Article  PubMed  Google Scholar 

  • Lo, C. M., H. B. Wang, M. Dembo, and Y. L. Wang. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79:144–152, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Loftis, M. J., D. Sexton, and W. Carver. Effects of collagen density on cardiac fibroblast behavior and gene expression. J. Cell. Physiol. 196:504–511, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Garcia, M. d. C., D. J. Beebe, and W. C. Crone. Young’s modulus of collagen at slow displacement rates. Biomed. Mater. Eng. 2009 (submitted).

  • McDonald, J. C., and G. M. Whitesides. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35:491–499, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Meyvantsson, I., J. W. Warrick, S. Hayes, A. Skoien, and D. J. Beebe. Automated cell culture in high density tubeless microfluidic device arrays. Lab Chip 8:717–724, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Miron-Mendoza, M., J. Seemann, and F. Grinnell. Collagen fibril flow and tissue translocation coupled to fibroblast migration in 3D collagen matrices. Mol. Biol. Cell 19:2051–2058, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Munevar, S., Y. L. Wang, and M. Dembo. Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophys. J. 80:1744–1757, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Norman, J. J., V. Mukundan, D. Bernstein, and B. L. Pruitt. Microsystems for biomechanical measurements. Pediatr. Res. 63:576–583, 2008.

    Article  PubMed  Google Scholar 

  • Pedersen, J. A., and M. A. Swartz. Mechanobiology in the third dimension. Ann. Biomed. Eng. 33:1469–1490, 2005.

    Article  PubMed  Google Scholar 

  • Pelham, R. J., and Y. L. Wang. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94:13661–13665, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Pelham, R. J., and Y. L. Wang. High resolution detection of mechanical forces exerted by locomoting fibroblasts on the substrate. Mol. Biol. Cell 10:935–945, 1999.

    PubMed  CAS  Google Scholar 

  • Provenzano, P. P., et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 4:38, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Provenzano, P. P., et al. Collagen density promotes mammary tumor initiation and progression. BMC Med. 6:11, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Provenzano, P. P., D. R. Inman, K. W. Eliceiri, S. M. Trier, and P. J. Keely. Contact guidance mediated three-dimensional cell migration is regulated by Rho/ROCK-dependent matrix reorganization. Biophys. J. 95:5374–5384, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Reinhart-King, C. A., M. Dembo, and D. A. Hammer. Endothelial cell traction forces on RGD-derivatized polyacrylamide substrata. Langmuir 19:1573–1579, 2003.

    Article  CAS  Google Scholar 

  • Reinhart-King, C. A., M. Dembo, and D. A. Hammer. Cell–cell mechanical communication through compliant substrates. Biophys. J. 95:6044–6051, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Rhee, S., and F. Grinnell. Fibroblast mechanics in 3D collagen matrices. Adv. Drug Deliv. Rev. 59:1299–1305, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Rhee, S., H. Jiang, C. H. Ho, and F. Grinnell. Microtubule function in fibroblast spreading is modulated according to the tension state of cell-matrix interactions. Proc. Natl Acad. Sci. USA 104:5425–5430, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Roeder, B. A., K. Klod, J. E. Sturgis, J. P. Robinson, and S. L. Voytik-Harbin. Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J. Biomech. Eng. Trans. ASME 124:214–222, 2002.

    Article  Google Scholar 

  • Stamenovic, D., S. M. Mijailovich, I. M. Tolic-Norrelykke, J. X. Chen, and N. Wang. Cell prestress. II. Contribution of microtubules. Am. J. Physiol. Cell Physiol. 282:C617–C624, 2002.

    PubMed  CAS  Google Scholar 

  • Tamariz, E., and F. Grinnell. Modulation of fibroblast morphology and adhesion during collagen matrix remodeling. Mol. Biol. Cell 13:3915–3929, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Tan, J. L., et al. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl Acad. Sci. USA 100:1484–1489, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Tan, W., and T. A. Desai. Microfluidic patterning of cellular biopolymer matrices for biomimetic 3-D structures. Biomed. Microdev. 5:235–244, 2003.

    Article  CAS  Google Scholar 

  • Vailhe, B., X. Ronot, P. Tracqui, Y. Usson, and L. Tranqui. In vitro angiogenesis is modulated by the mechanical properties of fibrin gels and is related to alpha(v)beta(3) integrin localization. In Vitro Cell. Dev. Biol. Anim. 33:763–773, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Wang, N., et al. Mechanical behavior in living cells consistent with the tensegrity model. Proc. Natl Acad. Sci. USA 98:7765–7770, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J. H. C., and J. S. Lin. Cell traction force and measurement methods. Biomech. Model. Mechanobiol. 6:361–371, 2007.

    Article  PubMed  Google Scholar 

  • Wang, N., E. Ostuni, G. M. Whitesides, and D. E. Ingber. Micropatterning tractional forces in living cells. Cell Motil. Cytoskeleton 52:97–106, 2002.

    Article  PubMed  Google Scholar 

  • Wells, R. G. The role of matrix stiffness in regulating cell behavior. Hepatology 47:1394–1400, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Whitesides, G. M. The origins and the future of microfluidics. Nature 442:368–373, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Wozniak, M. A., R. Desai, P. A. Solski, C. J. Der, and P. J. Keely. ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J. Cell Biol. 163:583–595, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Wozniak, M. A., and P. J. Keely. Use of three-dimensional collagen gels to study mechanotransduction in T47D breast epithelial cells. Biol. Proced. Online 7:144–161, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, X. Y., and X. Zhang. An optical Moire technique for cell traction force mapping. J. Micromech. Microeng. 18:125006–125015, 2008.

    Article  CAS  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4