A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-010-0003-9 below:

A Robust Current Pattern for the Detection of Intraventricular Hemorrhage in Neonates Using Electrical Impedance Tomography

References
  1. Abascal, J.-F. P. J., S. R. Arridge, D. Atkinson, R. Horesh, L. Fabrizi, M. De Lucia, L. Horesh, R. H. Bayford, and D. S. Holder. Use of anisotropic modeling in electrical impedance tomography: description of method and preliminary assessment of utility in imaging brain function in the adult human head. NeuroImage 43:258–268, 2008.

    Article  PubMed  Google Scholar 

  2. Adler, A., J. H. Arnold, R. Bayford, A. Borsic, B. Brown, P. Dixon, et al. GREIT: a unified approach to 2D linear EIT reconstruction of lung images. Physiol. Meas. 30:S35–S55, 2009.

    Article  PubMed  Google Scholar 

  3. Bagshaw, A. P., A. D. Liston, R. H. Bayford, A. Tizzard, A. P. Gibson, A. T. Tidswell, M. K. Sparkes, H. Dehghani, C. D. Binnie, and D. S. Holder. Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method. NeuroImage 20:752–764, 2003.

    Article  PubMed  Google Scholar 

  4. Blankenberg, F. G., N. N. Loh, and P. Bracci. Sonography, CT and MR imaging: a prospective comparison of neonates with suspected intracranial ischemia and hemorrhage. Am. J. Neuroradiol. 21:213–218, 2000.

    CAS  PubMed  Google Scholar 

  5. Burdjalov, V., P. Srinivasan, S. Baumgart, and A. R. Spitzer. Handheld portable ultrasound in the neonatal intensive care nursery: a new, inexpensive tool for the rapid diagnosis of common neonatal problems. J. Perinatol. 22:478–483, 2002.

    Article  PubMed  Google Scholar 

  6. Burger, H. C., and J. B. van Milaan. Measurement of the specific resistance of the human body to direct current. Acta Med. Scand. 114:584–607, 1943.

    Google Scholar 

  7. Geddes, L. A., and L. E. Baker. The specific resistance of biological material—a compendium of data for the biomedical engineer and physiologist. Med. Biol. Eng. 5:271–293, 1967.

    Article  CAS  PubMed  Google Scholar 

  8. Hansen, T. W. R. Prophylaxis of intraventricular hemorrhage in premature infants: new potential tools, new potential challenges. Ped. Crit. Care Med. 7:90–92, 2006.

    Article  Google Scholar 

  9. Hansen, P. C., and D. P. O’Leary. The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput. 14(6):1487–1503, 1993.

    Article  Google Scholar 

  10. Holdefer, R., R. Sadleir, and M. J. Russell. Predicted current densities in the brain during transcranial electrical stimulation. Clin. Neurophysiol. 117:1388–1397, 2006.

    Article  CAS  PubMed  Google Scholar 

  11. Holder, D. S. Electrical Impedance Tomography Methods, History and Applications. UK: IOP Publishing, 2005.

    Google Scholar 

  12. Huisman, T. A. G. M. Intracranial hemorrhage: ultrasound, CT and MRI findings. Eur. Radiol. 15:434–440, 2005.

    Article  PubMed  Google Scholar 

  13. Kauppinen, P., J. Hyttinen, and J. Malmivuo. Sensitivity distribution simulations of impedance tomography electrode combinations. IJBEM 7:344–347, 2005.

    Google Scholar 

  14. Liston, A. D., R. H. Bayford, and D. S. Holder. The effect of layers in imaging brain function using electrical impedance tomography. Physiol. Meas. 25:143–158, 2004.

    Article  CAS  PubMed  Google Scholar 

  15. Liston, A. D., R. H. Bayford, A. T. Tidswell, and D. S. Holder. A multi-shell algorithm to reconstruct EIT images of brain function. Physiol. Meas. 23:105–119, 2002.

    Article  CAS  PubMed  Google Scholar 

  16. Meeson, S., A. L. T. Killingback, and B. H. Blott. The dependence of EIT images on the assumed initial conductivity distribution: a study of pelvic imaging. Phys. Med. Biol. 40:643–657, 1995.

    Article  CAS  PubMed  Google Scholar 

  17. Metherall, P., D. C. Barber, R. H. Smallwood, and B. H. Brown. Three dimensional electrical impedance tomography. Nature 380:509–512, 1996.

    Article  CAS  PubMed  Google Scholar 

  18. Murai, T., and Y. Kagawa. Electrical impedance computed tomography based on a finite element model. IEEE Trans. Biomed. Eng. BME 32:177–184, 1985.

    Article  CAS  Google Scholar 

  19. Murrieta-Lee, J. C., C. J. D. Pomfrett, P. C. W. Beatty, N. Polydorides, D. B. Mussel, R. C. Waterfall, and H. McCann. Sub-second observations of EIT voltages changes on the human scalp due to brain stimulus. In: Proceedings of 26th Annual International Conference on the IEEE EMBS, San Francisco, CA, USA, September 1–5, 2004.

  20. Oh, S., T. Tang, A. S. Tucker, and R. J. Sadleir. Normalization of a spatially variant image reconstruction problem in electrical impedance tomography using system blurring properties. Physiol. Meas. 30:275–289, 2009.

    Article  PubMed  Google Scholar 

  21. Oh, T. I., E. J. Woo, and D. Holder. Multi-frequency EIT system with radially symmetric architecture: KHU Mark1. Physiol. Meas. 28:S183–S196, 2007.

    Article  PubMed  Google Scholar 

  22. Oostendorp, T., J. Delbeke, and D. Stegeman. The conductivity of the human skull: results of in vivo and in vitro measurements. IEEE Trans. Biomed. Eng. 47:1487–1492, 2000.

    Article  CAS  PubMed  Google Scholar 

  23. Papile, L. A., J. Burstein, R. Burstein, and H. Koffler. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1500 gm. J. Pediatr. 92:529–534, 1978.

    Article  CAS  PubMed  Google Scholar 

  24. Romsauerova, A., A. McEwan, L. Horesh, R. Yerworth, R. H. Bayford, and D. S. Holder. Multi-frequency electrical impedance tomography (EIT) of the adult human head: initial findings in brain tumours, arteriovenous malformations and chronic stroke, development of an analysis method and calibration. Physiol. Meas. 27:S147–S161, 2006.

    Article  CAS  PubMed  Google Scholar 

  25. Sadleir, R., and A. Argibay. Skull impedance measurements in preserved tissue and neonatal piglet. In: 7th Conference on Biomedical Applications of Electrical Impedance Tomography, September 27–31, 2006, p. 111.

  26. Sadleir, R. J., and R. A. Fox. Quantification of blood volume by electrical impedance tomography using a tissue equivalent phantom. Physiol. Meas. 19:501–516, 1998.

    Article  CAS  PubMed  Google Scholar 

  27. Sadleir, R. J., F. Neralwala, A. S. Tucker, and T. Tang. A controllably anisotropic conductivity or diffusion phantom constructed from isotropic layers. Ann. Biomed. Eng. 37:2522–2531, 2009.

    Article  PubMed  Google Scholar 

  28. Sadleir, R. J., and T. Tang. Electrode configurations for detection of intraventricular haemorrhage in the premature neonate. Physiol. Meas. 30:63–79, 2009.

    Article  CAS  PubMed  Google Scholar 

  29. Sadleir, R. J., S. U. Zhang, A. S. Tucker, and S. Oh. Imaging and quantification of anomaly volume using an eight-electrode ‘hemiarray’ EIT reconstruction method. Physiol. Meas. 29:913–927, 2008.

    Article  CAS  PubMed  Google Scholar 

  30. Schierlitz, L., P. S. Huppi, M. Jakab, R. Kikinis, M. C. Frates, C. McTempany, and F. A. Jolesz. Three-dimensional modeling and volume assessment of the fetal and neonatal intracranial ventricles. In: Proceeding of International Society for Magnetic Resonance in Medicine, Vol. 9, 2001, p. 402.

  31. Seagar, A. D., D. C. Barber, and B. H. Brown. Theoretical limites to sensitivity and resolution in impedance imaging. Clin. Phys. Physiol. Meas. 8(Suppl A):13–31, 1987.

    Article  PubMed  Google Scholar 

  32. Stoy, R. D., K. R. Foster, and H. P. Schwan. Dielectric properties of mammalian tissues from 0.1 to 100 MHz: a summary of recent data. Phys. Med. Biol. 27:501–514, 1982.

    Article  CAS  PubMed  Google Scholar 

  33. Tidswell, A. T., A. Gibson, R. H. Bayford, and D. S. Holder. Three dimensional electrical impedance tomography of human brain activity. NeuroImage 13:283–294, 2001.

    Article  CAS  PubMed  Google Scholar 

  34. Tidswell, A. T., A. Gibson, R. H. Bayford, and D. S. Holder. Electrical impedance tomography of human brain activity with a two-dimensional ring of scalp electrodes. Physiol. Meas. 22:167–175, 2001.

    Article  CAS  PubMed  Google Scholar 

  35. Tidswell, A. T., A. Gibson, R. H. Bayford, and D. S. Holder. Validation of a 3D reconstruction algorithm for EIT of human brain function in a realistic head-shaped tank. Physiol. Meas. 22:177–185, 2001.

    Article  CAS  PubMed  Google Scholar 

  36. Tizzard, A., L. Horesh, R. J. Yerworth, D. S. Holder, and R. H. Bayford. Generating accurate finite element meshes for the forward model of the human head in EIT. Physiol. Meas. 26:S251–S261, 2005.

    Article  CAS  PubMed  Google Scholar 

  37. von Ellenrieder, N., C. H. Muravchik, and A. Nehorai. Effects of geometric head model perturbations on the EEG forward and inverse problems. IEEE Trans. Biomed. Eng. 53:421–429, 2006.

    Article  Google Scholar 

  38. Walker, G. C., E. Berry, S. W. Smye, and D. S. Brettle. Materials for phantoms for terahertz pulsed imaging. Med. Biol. 49:N363–N369, 2004.

    Article  Google Scholar 

  39. Webster, J. G. Electrical Impedance Tomography. UK: IOP Publishing, 1990.

    Google Scholar 

  40. Xu, P. Truncated SVD methods for discrete linear ill-posed problems. Geophys. J. Int. 135:505–514, 1998.

    Article  Google Scholar 

  41. York, J., and M. DeVoe. Health issues in survivors of prematurity. Southern Med. J. 95:969–976, 2002.

    PubMed  Google Scholar 

  42. Yvert, B., O. Bertrand, M. Thvenet, J. F. Echallier, and J. Pernier. A systematic evaluation of the spherical model accuracy in EEG dipole localization. Electroencephalogr. Clin. Neurophysiol. 102:452–459, 1997.

    Article  CAS  PubMed  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4