Adami, S., D. Gatti, V. Braga, D. Bianchini, and M. Rossini. Site-specific effects of strength training on bone structure and geometry of ultradistal radius in postmenopausal women. J. Bone Miner. Res. 14:120–124, 1999.
Akhter, M. P., D. M. Cullen, E. A. Pedersen, D. B. Kimmel, and R. R. Recker. Bone response to in vivo mechanical loading in two breeds of mice. Calcif. Tissue Int. 63:442–449, 1998.
Amblard, D., M. H. Lafage-Proust, A. Laib, T. Thomas, P. Ruegsegger, C. Alexandre, and L. Vico. Tail suspension induces bone loss in skeletally mature mice in the C57BL/6J strain but not in the C3H/HeJ strain. J. Bone Miner. Res. 18:561–569, 2003.
Ameye, L., D. Aria, K. Jepsen, A. Oldberg, T. Xu, and M. F. Young. Abnormal collagen fibrils in tendons of biglycan/fibromodulin-deficient mice leads to gait impairment, ectopic ossification, and osteoarthritis. FASEB J. 16:673–680, 2002.
Baig, A., J. Fox, R. Young, Z. Wang, J. Hsu, W. Higuchi, A. Chhettry, H. Zhuang, and M. Otsuka. Relationships among carbonated apatite solubility, crystallite size, and microstrain parameters. Calcif. Tissue Int. 64:437–449, 1999.
Bhowmik, R., K. S. Katti, and D. R. Katti. Mechanics of molecular collagen is influenced by hydroxyapatite in natural bone. J. Mater. Sci. 42:8795–8803, 2007.
Bianco, P., L. W. Fisher, M. F. Young, J. D. Termine, and P. G. Robey. Expression and localization of the two small proteoglycans biglycan and decorin in developing human skeletal and non-skeletal tissues. J. Histochem. Cytochem. 38:1549–1563, 1990.
Boskey, A. L., T. M. Wright, and R. D. Blank. Collagen and bone strength. J. Bone Miner. Res. 14:330–335, 1999.
Burger, E. H., and J. Klein-Nulend. Mechanotransduction in bone–role of the lacuno-canalicular network. FASEB J. 13(Suppl):S101–S112, 1999.
Burstein, A. H., J. M. Zika, K. G. Heiple, and L. Klein. Contribution of collagen and mineral to the elastic-plastic properties of bone. J. Bone Joint Surg. Am. 57:956–961, 1975.
Carden, A., R. M. Rajachar, M. D. Morris, and D. H. Kohn. Ultrastructural changes accompanying the mechanical deformation of bone tissue: a Raman imaging study. Calcif. Tissue Int. 72:166–175, 2003.
Chen, X. D., M. R. Allen, S. Bloomfield, T. Xu, and M. Young. Biglycan-deficient mice have delayed osteogenesis after marrow ablation. Calcif. Tissue Int. 72:577–582, 2003.
Chen, X. D., L. W. Fisher, P. G. Robey, and M. F. Young. The small leucine-rich proteoglycan biglycan modulates BMP-4-induced osteoblast differentiation. FASEB J. 18:948–958, 2004.
Chen, X. D., S. Shi, T. Xu, P. G. Robey, and M. F. Young. Age-related osteoporosis in biglycan-deficient mice is related to defects in bone marrow stromal cells. J. Bone Miner. Res. 17:331–340, 2002.
Corsi, A., T. Xu, X. D. Chen, A. Boyde, J. Liang, M. Mankani, B. Sommer, R. V. Iozzo, I. Eichstetter, P. G. Robey, P. Bianco, and M. F. Young. Phenotypic effects of biglycan deficiency are linked to collagen fibril abnormalities, are synergized by decorin deficiency, and mimic Ehlers-Danlos-like changes in bone and other connective tissues. J. Bone Miner. Res. 17:1180–1189, 2002.
Duncan, R. L., and C. H. Turner. Mechanotransduction and the functional response of bone to mechanical strain. Calcif. Tissue Int. 57:344–358, 1995.
Follet, H., G. Boivin, C. Rumelhart, and P. J. Meunier. The degree of mineralization is a determinant of bone strength: a study on human calcanei. Bone 34:783–789, 2004.
Fritsch, A., C. Hellmich, and L. Dormieux. Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: experimentally supported micromechanical explanation of bone strength. J. Theor. Biol. 260:230–252, 2009.
Hoshi, A., H. Watanabe, M. Chiba, and Y. Inaba. Bone density and mechanical properties in femoral bone of swim loaded aged mice. Biomed. Environ. Sci. 11:243–250, 1998.
Isaksson, H., V. Tolvanen, M. A. J. Finnilä, J. Iivarinen, J. Tuukkanen, K. Seppänen, J. P. A. Arokoski, P. A. Brama, J. S. Jurvelin, and H. J. Helminen. Physical exercise improves properties of bone and its collagen network in growing and maturing mice. Calcif. Tissue Int. 85(3):247–256, 2009.
Kodama, Y., Y. Umemura, S. Nagasawa, W. G. Beamer, L. R. Donahue, C. R. Rosen, D. J. Baylink, and J. R. Farley. Exercise and mechanical loading increase periosteal bone formation and whole bone strength in C57BL/6J mice but not in C3H/Hej mice. Calcif. Tissue Int. 66:298–306, 2000.
Kohn, D. H., N. D. Sahar, J. M. Wallace, K. Golcuk, and M. D. Morris. Exercise alters mineral and matrix composition in the absence of adding new bone. Cells Tissues Organs 189:33–37, 2009.
Kuhn, J. L., S. A. Goldstein, L. A. Feldkamp, R. W. Goulet, and G. Jesion. Evaluation of a microcomputed tomography system to study trabecular bone structure. J. Orthop. Res. 8:833–842, 1990.
Landis, W. J. The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. Bone 16:533–544, 1995.
Li, X., W. Gu, G. Masinde, M. Hamilton-Ulland, C. H. Rundle, S. Mohan, and D. J. Baylink. Genetic variation in bone-regenerative capacity among inbred strains of mice. Bone 29:134–140, 2001.
Marusic, A., V. Katavic, D. Grcevic, and I. K. Lukic. Genetic variability of new bone induction in mice. Bone 25:25–32, 1999.
Miller, L. M., W. Little, A. Schirmer, F. Sheik, B. Busa, and S. Judex. Accretion of bone quantity and quality in the developing mouse skeleton. J. Bone Miner. Res. 22:1037–1045, 2007.
Mosekilde, L., J. S. Thomsen, P. B. Orhii, R. J. McCarter, W. Mejia, and D. N. Kalu. Additive effect of voluntary exercise and growth hormone treatment on bone strength assessed at four different skeletal sites in an aged rat model. Bone 24:71–80, 1999.
Paschalis, E. P., K. Verdelis, S. B. Doty, A. L. Boskey, R. Mendelsohn, and M. Yamauchi. Spectroscopic characterization of collagen cross-links in bone. J. Bone Miner. Res. 16:1821–1828, 2001.
Robling, A. G., F. M. Hinant, D. B. Burr, and C. H. Turner. Shorter, more frequent mechanical loading sessions enhance bone mass. Med. Sci. Sports Exerc. 34:196–202, 2002.
Takagi, M., T. Yamada, N. Kamiya, T. Kumagai, and A. Yamaguchi. Effects of bone morphogenetic protein-2 and transforming growth factor-beta1 on gene expression of decorin and biglycan by cultured osteoblastic cells. Histochem. J. 31:403–409, 1999.
Teti, A., and A. Zallone. Do osteocytes contribute to bone mineral homeostasis? Osteocytic osteolysis revisited. Bone 44:11–16, 2009.
Timlin, J. A., A. Carden, M. D. Morris, R. M. Rajachar, and D. H. Kohn. Raman spectroscopic imaging markers for fatigue-related microdamage in bovine bone. Anal. Chem. 72:2229–2236, 2000.
Turner, C. H., and D. B. Burr. Basic biomechanical measurements of bone: a tutorial. Bone 14:595–607, 1993.
Vaidya, S., C. Karunakaran, B. Pande, N. Gupta, R. Iyer, and S. Karweer. Pressure-induced crystalline to amorphous transition in hydroxylapatite. J. Mater. Sci. 32:3213–3217, 1997.
Wallace, J. M., K. Golcuk, M. D. Morris, and D. H. Kohn. Inbred strain-specific response to biglycan deficiency in the cortical bone of C57BL6/129 and C3H/He mice. J. Bone Miner. Res. 24:1002–1012, 2009.
Wallace, J. M., R. M. Rajachar, M. R. Allen, S. A. Bloomfield, P. G. Robey, M. F. Young, and D. H. Kohn. Exercise-induced changes in the cortical bone of growing mice are bone- and gender-specific. Bone 40:1120–1127, 2007.
Wallace, J. M., R. M. Rajachar, X. D. Chen, S. Shi, M. R. Allen, S. A. Bloomfield, C. M. Les, P. G. Robey, M. F. Young, and D. H. Kohn. The mechanical phenotype of biglycan-deficient mice is bone- and gender-specific. Bone 39:106–116, 2006.
Wallace, J. M., M. S. Ron, and D. H. Kohn. Short-term exercise in mice increases tibial post-yield mechanical properties while two weeks of latency following exercise increases tissue-level strength. Calcif. Tissue Int. 84:297–304, 2009.
Wang, X., X. Li, R. A. Bank, and C. M. Agrawal. Effects of collagen unwinding and cleavage on the mechanical integrity of the collagen network in bone. Calcif. Tissue Int. 71:186–192, 2002.
Wang, X., X. Shen, X. Li, and C. M. Agrawal. Age-related changes in the collagen network and toughness of bone. Bone 31:1–7, 2002.
Weiner, S., and W. Traub. Bone structure: from angstroms to microns. FASEB J. 6:879–885, 1992.
Wilson, E. E., A. Awonusi, M. D. Morris, D. H. Kohn, M. M. Tecklenburg, and L. W. Beck. Three structural roles for water in bone observed by solid-state NMR. Biophys. J. 90:3722–3731, 2006.
Wilson, E. E., A. Awonusi, M. D. Morris, D. H. Kohn, M. M. Tecklenburg, and L. W. Beck. Highly ordered interstitial water observed in bone by nuclear magnetic resonance. J. Bone Miner. Res. 20:625–634, 2005.
Wolff, J., P. Maquet, and R. Furlong. The Law of Bone Remodelling. Berlin, New York: Springer-Verlag Berlin and Heidelberg GmbH & Co. K, p. 126, 1986.
Xu, T., P. Bianco, L. W. Fisher, G. Longenecker, E. Smith, S. Goldstein, J. Bonadio, A. Boskey, A. M. Heegaard, B. Sommer, K. Satomura, P. Dominguez, C. Zhao, A. B. Kulkarni, P. G. Robey, and M. F. Young. Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice. Nat. Genet. 20:78–82, 1998.
Yeh, J. K., J. F. Aloia, and S. Yasumura. Effect of physical activity on calcium and phosphorus metabolism in the rat. Am. J. Physiol. 256:E1–E6, 1989.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4