A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-009-9870-3 below:

Falling-Edge, Variable Threshold (FEVT) Method for the Automated Detection of Gastric Slow Wave Events in High-Resolution Serosal Electrode Recordings

Abstract

High resolution (HR) multi-electrode mapping is increasingly being used to evaluate gastrointestinal slow wave behaviors. To create the HR activation time (AT) maps from gastric serosal electrode recordings that quantify slow wave propagation, it is first necessary to identify the AT of each individual slow wave event. Identifying these ATs has been a time consuming task, because there has previously been no reliable automated detection method. We have developed an automated AT detection method termed falling-edge, variable threshold (FEVT) detection. It computes a detection signal transform to accentuate the high ‘energy’ content of the falling edges in the serosal recording, and uses a running median estimator of the noise to set the time-varying detection threshold. The FEVT method was optimized, validated, and compared to other potential algorithms using in vivo HR recordings from a porcine model. FEVT properly detects ATs in a wide range of waveforms, making its performance substantially superior to the other methods, especially for low signal-to-noise ratio (SNR) recordings. The algorithm offered a substantial time savings (>100 times) over manual-marking whilst achieving a highly satisfactory sensitivity (0.92) and positive-prediction value (0.89).

This is a preview of subscription content, log in via an institution to check access.

Access this article Subscribe and save

Springer+ Basic

€34.99 /Month

Subscribe now Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others Explore related subjectsDiscover the latest articles and news from researchers in related subjects, suggested using machine learning. References
  1. Bradshaw, L. A., A. Irimia, J. A. Sims, M. R. Gallucci, R. L. Palmer, and W. O. Richards. Biomagnetic characterization of spatiotemporal parameters of the gastric slow wave. Neurogastroenterol. Motil. 18:619–631, 2006.

    Article  CAS  PubMed  Google Scholar 

  2. Chen, J., Z. Lin, J. Pan, and R. McCallum. Abnormal gastric myoelectrical activity and delayed gastric emptying in patients with symptoms suggestive of gastroparesis. Dig. Dis. Sci. 41:1538–1545, 1996.

    Article  CAS  PubMed  Google Scholar 

  3. Cheng, L. K., G. O’Grady, P. Du, J. U. Egbuji, J. A. Windsor, and A. J. Pullan. Gastrointestinal system. Wiley Interdiscip. Rev.: Syst. Biol. Med., 2009. doi:10.1002/wsbm.19.

  4. Crenner, F., A. Lambert, F. Angel, J. Schang, and J. Grenier. Analogue automated analysis of small intestinal electromyogram. Med. Biol. Eng. Comput. 20:151–158, 1982.

    Article  CAS  PubMed  Google Scholar 

  5. Du, P., G. O’Grady, J. U. Egbuji, W. J. Lammers, D. Budgett, P. Nielsen, J. A. W. A. J. Pullan, and L. K. Cheng. High resolution mapping of in-vivo gastrointestinal slow wave activity using flexible printed circuit board electrodes: methods and validation. Ann. Biomed. Eng. 37:839–846, 2009.

    Article  PubMed  Google Scholar 

  6. Du, P., G. O’Grady, J. A. Windsor, L. K. Cheng, and A. J. Pullan. A tissue framework for simulating the effects of gastric electrical stimulation and in-vivo validation. IEEE Trans. Biomed. Eng. 56:2755–2761, 2009.

    Article  PubMed  Google Scholar 

  7. Du, P., W. Qiao, G. O’Grady, J. U. Egbuji, W. Lammers, L. K. Cheng, and A. J. Pullan. Automated detection of gastric slow wave events and estimation of propagation velocity vector fields from serosal high-resolution mapping. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1:2527–2530, 2009.

    Google Scholar 

  8. Gardner, P. I., P. C. Ursell, J. J. Fenoglio, and A. L. Wit. Electrophysiologic and anatomic basis for fractionated electrograms recorded from healed myocardial infarcts. Circulation 72:596–611, 1985.

    CAS  PubMed  Google Scholar 

  9. Hodge, V. and J. Austin. A survey of outlier detection methodologies. Artif. Intell. Rev. 22:85–126, 2004.

    Article  Google Scholar 

  10. Huizinga, J. D. and W. J. Lammers. Gut peristalsis is governed by a multitude of cooperating mechanisms. Am. J. Physiol. Gastrointest. Liver Physiol. 296:1–8, 2009.

    Article  Google Scholar 

  11. Kaiser, J. On a simple algorithm to calculate the energy of a signal. In: Proceedings of the IEEE International Conference on Acoustic Speech and Signal Processing, edited by Y. Smith, Albuquerque, April 1990, pp. 381–384.

  12. Kaiser, J. Some useful properties of Teager’s energy operators. In: 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 3. ICASSP-93, 1993.

  13. Kim, S. and J. McNames. Automatic spike detection based on adaptive template matching for extracellular neural recordings. J. Neurosci. Methods 165:165–174, 2007.

    Article  PubMed  Google Scholar 

  14. Kohler, B., C. Hennig, and R. Orglmeister. The principles of software QRS detection. In: IEEE Engineering in Medicine and Biology, Jan/Feb 2002, pp. 42–57.

  15. Lammers, W. Smoothmap v3.0.3. http://www.Smoothmap.org.

  16. Lammers, W. J., B. Michiels, J. Voeten, L. Ver Donck, and J. A. Schuurkes. Mapping slow waves and spikes in chronically instrumented conscious dogs: automated on-line electrogram analysis. Med. Biol. Eng. Comput. 46:121–129, 2008.

    Article  PubMed  Google Scholar 

  17. Lammers, W. J., B. Stephen, K. Arafat, and G. W. Manefield. High resolution electrical mapping in the gastrointestinal system: initial results. Neurogastroenterol. Motil. 8:207–216, 1996.

    CAS  PubMed  Google Scholar 

  18. Lammers, W. J., L. Ver Donck, B. Stephen, D. Smets, and J. A. Schuurkes. Focal activities and re-entrant propagations as mechanisms of gastric tachyarrhythmias. Gastroenterology 135:1601–1611, 2008.

    Article  PubMed  Google Scholar 

  19. Lammers, W. J., L. Ver Donck, B. Stephen, D. Smets, and J. A. Schuurkes. Origin and propagation of the slow wave in the canine stomach: the outlines of a gastric conduction system. Am. J. Physiol. Gastrointest. Liver Physiol. 296:1200–1210, 2009.

    Article  Google Scholar 

  20. Lewicki, M. A review of methods for spike sorting: the detection and classification of neural action potentials. Network: Comput. Neural Syst. 9:R53–R78, 1998.

    Article  CAS  Google Scholar 

  21. Maragos, P. and A. Potamianos. Higher order differential energy operators. IEEE Signal Process. Lett. 2:152–154, 1995.

    Article  Google Scholar 

  22. McAdams, E. Bioelectrodes. In: Encyclopedia of Medical Devices and Instrumentation (2nd ed.), edited by J. G. Webster. New York: Wiley, 2006, pp. 120–166.

  23. Mukhopadhyay, S. and G. C. Ray. A new interpretation of nonlinear energy operator and its efficacy in spike detection. IEEE Trans. Biomed. Eng. 45:180–187, 1998.

    Article  CAS  PubMed  Google Scholar 

  24. Nenadic, Z. and J. W. Burdick. Spike detection using the continuous wavelet transform. IEEE Trans. Biomed. Eng. 52:74–87, 2005.

    Article  PubMed  Google Scholar 

  25. O’Grady, G., P. Du, J. Egbuji, W. Lammers, D. Budgett, P. Nielsen, J. Windsor, A. Pullan, and L. Cheng. High-resolution mapping of human gastric slow wave activity: methods and first results. Gastroenterology 136:A484, 2009.

    Google Scholar 

  26. O’Grady, G., P. Du, J. U. Egbuji, et al. A novel laparoscopic device for measuring gastrointestinal slow-wave activity. Surg. Endosc. 23:2842–2848, 2009.

    Article  Google Scholar 

  27. Postaire, J., N. Van Houtte, and G. Devroede. A computer system for quantitative analysis of gastrointestinal signals. Comput. Biol. Med. 9:295, 1979.

    Article  CAS  PubMed  Google Scholar 

  28. Pousse, A., C. Mendel, J. Vial, and J. Grenier. Computer program for intestinal basic electrical rhythm patterns analysis. Pflugers Arch. Eur. J. Physiol. 376:259–262, 1978.

    Article  CAS  Google Scholar 

  29. Richards, W. O., C. L. Garrard, S. H. Allos, L. A. Bradshaw, D. J. Staton, and J. P. Wikswo. Noninvasive diagnosis of mesenteric ischemia using a SQUID magnetometer. Ann. Surg. 221:696–704, 1995.

    Article  CAS  PubMed  Google Scholar 

  30. Sezan, M. I. A peak detection algorithm and its application to histogram-based image data reduction. Comput. Vis. Graph. Image Process. 49:36–51, 1990.

    Article  Google Scholar 

  31. Shenasa, M., G. Hindricks, M. Borggrefe, and G. Breithardt. Cardiac Mapping. Oxford, UK: Blackwell Publishing Ltd, 2009.

    Google Scholar 

  32. Ver Donck, L., W. J. Lammers, B. Moreaux, D. Smets, J. Voeten, J. Vekemans, J. A. Schuurkes, and B. Coulie. Mapping slow waves and spikes in chronically instrumented conscious dogs: implantation techniques and recordings. Med. Biol. Eng. Comput. 44:170–178, 2006.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the assistance of the animal care facilities at their respective Universities, including Linley Nisbett for her technical skills. This work was supported by NIH Grants R01 DK58197, RO1 DK58697-02, RO1 DK64775, and grants from the NZ Society of Gastroenterology and NZ Health Research Council.

Author information Authors and Affiliations
  1. Department of Physics, Vanderbilt University, Nashville, TN, USA

    Jonathan C. Erickson & L. Alan Bradshaw

  2. Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand

    Gregory O’Grady, Peng Du, Wenlian Qiao, Andrew J. Pullan & Leo K. Cheng

  3. Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA

    Chibuike Obioha, L. Alan Bradshaw & Andrew J. Pullan

  4. University of South Alabama, Mobile, AL, USA

    William O. Richards

  5. Department of Physics-Engineering, Washington and Lee University, 204 West Washington Street, Lexington, VA, 24450, USA

    Jonathan C. Erickson

Authors
  1. Jonathan C. Erickson
  2. Gregory O’Grady
  3. Peng Du
  4. Chibuike Obioha
  5. Wenlian Qiao
  6. William O. Richards
  7. L. Alan Bradshaw
  8. Andrew J. Pullan
  9. Leo K. Cheng
Corresponding author

Correspondence to Jonathan C. Erickson.

Additional information

Associate Editor Berj L. Bardakjian oversaw the review of this article.

JCE developed, coded, and analyzed the performance of all automated slow wave detection algorithms. GOG and CO performed the animal surgeries and made serosal electrode recordings. PD, WQ, and LKC developed an initial version of the negative derivative detection signal transform method. AJP, LKC, WOR, and LAB conceived and coordinated the porcine model gastric experiments. JCE and GOG drafted this manuscript.

About this article Cite this article

Erickson, J.C., O’Grady, G., Du, P. et al. Falling-Edge, Variable Threshold (FEVT) Method for the Automated Detection of Gastric Slow Wave Events in High-Resolution Serosal Electrode Recordings. Ann Biomed Eng 38, 1511–1529 (2010). https://doi.org/10.1007/s10439-009-9870-3

Download citation

Keywords

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4