Bodin, P., and G. Burnstock. ATP-stimulated release of ATP by human endothelial cells. J. Cardiovasc. Pharmacol. 27:872–875, 1996.
Boussel, L., V. Rayz, C. McCulloch, A. Martin, G. Acevedo-Bolton, M. Lawton, R. Higashida, W. S. Smith, W. L. Young, and D. Saloner. Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke 39:2997–3002, 2008.
Burnstock, G. Purinergic signaling and vascular cell proliferation and death. Arterioscler. Thromb. Vasc. Biol. 22:364–373, 2002.
Burnstock, G. Introduction: P2 receptors. Curr. Top. Med. Chem. 4:793–803, 2004.
Burnstock, G. Vessel tone and remodeling. Nat. Med. 12:16–17, 2006.
Caro, C. G., J. M. Fitz-Gerald, and R. C. Schroter. Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass, transfer mechanism for atherogenesis. Proc. R. Soc. Lond. Ser. B 177:109–159, 1971.
Choi, H. W., K. W. Ferrara, and A. I. Barakat. Modulation of ATP/ADP concentration at the endothelial surface by shear stress: effect of flow recirculation. Ann. Biomed. Eng. 35:505–516, 2007.
Comerford, A., and T. David. Computer model of nucleotide transport in a realistic porcine aortic trifurcation. Ann. Biomed. Eng. 36:1175–1187, 2008.
Comerford, A., T. David, and M. Plank. Effects of arterial bifurcation geometry on nucleotide concentration at the endothelium. Ann. Biomed. Eng. 34:605–617, 2006.
Comerford, A., M. J. Plank, and T. David. Endothelial nitric oxide synthase and calcium production in arterial geometries: an integrated fluid mechanics/cell model. J. Biomech. Eng. 130:011010, 2008.
Crawford, D. W., and D. H. Blankenhorn. Arterial wall oxygenation, oxyradicals, and atherosclerosis. Atherosclerosis 89:97–108, 1991.
da Silva, C. G., A. Specht, B. Wegiel, C. Ferran, and E. Kaczmarek. Mechanism of purinergic activation of endothelial nitric oxide synthase in endothelial cells. Circulation 119:871–879, 2009.
David, T. Wall shear stress modulation of ATP/ADP concentration at the endothelium. Ann. Biomed. Eng. 31:1231–1237, 2003.
Erlinge, D., and G. Burnstock. P2 receptors in cardiovascular regulation and disease. Purinergic Signal. 4:1–20, 2008.
Ethier, C. R. Computational modeling of mass transfer and links to atherosclerosis. Ann. Biomed. Eng. 30:461–471, 2002.
Ford, M. D., S.-W. Lee, S. P. Lownie, D. W. Holdsworth, and D. A. Steinman. On the effect of parent-aneurysm angle on flow patterns in basilar tip aneurysms: toward a surrogate geometric marker of intra-aneurysmal hemodynamics. J. Biomech. 41:241–248, 2008.
Frösen, J., A. Piippo, A. Paetau, M. Kangasniemi, M. Niemelä, J. Hernesniemi, and J. Jääskeläinen. Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases. Stroke 35:2287–2293, 2004.
Hoff, H. F., C. L. Heideman, R. L. Jackson, R. J. Bayardo, H. S. Kim, and A. M. J. Gotto. Localization patterns of plasma apolipoproteins in human atherosclerotic lesions. Circ. Res. 37:72–79, 1975.
Imai, Y., K. Sato, T. Ishikawa, and T. Yamaguchi. Inflow into saccular cerebral aneurysms at arterial bends. Ann. Biomed. Eng. 36:1489–1495, 2008.
International Study of Unruptured Intracranial Aneurysms Investigators. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 362:103–110, 2003.
John, K., and A. I. Barakat. Modulation of ATP/ADP concentration at the endothelial surface by shear stress: effect of flow-induced ATP release. Ann. Biomed. Eng. 29:740–751, 2001.
Kaazempur-Mofrad, M. R., and C. R. Ethier. Mass transport in an anatomically realistic human right coronary artery. Ann. Biomed. Eng. 29:121–127, 2001.
Kataoka, K., M. Taneda, T. Asai, A. Kinoshita, M. Ito, and R. Kuroda. Structural fragility and inflammatory response of ruptured cerebral aneurysms: a comparative study between ruptured and unruptured cerebral aneurysms. Stroke 30:1396–1401, 1999.
Koshiba, N., J. Ando, X. Chen, and T. Hisada. Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model. J. Biomech. Eng. 129:374–385, 2007.
Kosierkiewicz, T. A., S. M. Factor, and D. W. Dickson. Immunocytochemical studies of atherosclerotic lesions of cerebral berry aneurysms. J. Neuropathol. Exp. Neurol. 53:399–406, 1994.
Loscalzo, J., and G. Welch. Nitric oxide and its role in the cardiovascular system. Prog. Cardiovasc. Dis. 38:87–104, 1995.
Ma, P., X. Lu, and D. N. Ku. Heat and mass transfer in a separated flow region for high Prandtl and Schmidt numbers under pulsatile flow conditions. Int. J. Heat Mass Transf. 37:2723–2736, 1994.
Mantha, A., C. Karmonik, G. Benndorf, C. Strother, and R. Metcalfe. Hemodynamics in a cerebral artery before and after the formation of an aneurysm. Am. J. Neuroradiol. 27:1113–1118, 2006.
Moore, J. A., and C. R. Ethier. Oxygen mass transfer calculations in large arteries. J. Biomech. Eng. 19:469–475, 1997.
Ohno, K., T. Arai, E. Isotani, T. Nariai, and K. Hirakawa. Ischaemic complication following obliteration of unruptured cerebral aneurysms with atherosclerotic or calcified neck. Acta Neurochir. (Wien) 141:699–706, 1999.
Patankar, S. V., and D. B. Spalding. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transf. 15:1787–1803, 1972.
Perlea, L., R. Fahrig, D. W. Holdsworth, and S. P. Lownie. An analysis of the geometry of saccular intracranial aneurysms. Am. J. Neuroradiol. 20:1079–1089, 1999.
Ralevic, V., and G. Burnstock. Receptors for purines and pyrimidines. Pharmacol. Rev. 50:423–492, 1998.
Rappitsch, G., and K. Perktold. Computer simulation of convective diffusion processes in large arteries. J. Biomech. 29:207–215, 1996.
Ross, R. Atherosclerosis: a defense mechanism gone awry. Am. J. Pathol. 143:987–1002, 1993.
Sato, K., Y. Imai, T. Ishikawa, N. Matsuki, and T. Yamaguchi. The importance of parent artery geometry in intra-aneurysmal hemodynamics. Med. Eng. Phys. 30:774–782, 2008.
Shen, J., M. A. Gimbrone, F. W. Luscinskas, and C. F. Dewey. Regulation of adenine-nucleotide concentration at endothelium fluid interface by viscous shear-flow. Biophys. J. 64:1323–1330, 1993.
Shimogonya, Y., T. Ishikawa, Y. Imai, N. Matsuki, and T. Yamaguchi. Can temporal fluctuation in spatial wall shear stress gradient initiate a cerebral aneurysm? A proposed novel hemodynamic index, the gradient oscillatory number (GON). J. Biomech. 42:550–554, 2009.
Shimogonya, Y., T. Ishikawa, Y. Imai, N. Matsuki, and T. Yamaguchi. A realistic simulation of saccular cerebral aneurysm formation: focusing on a novel hemodynamic index, the gradient oscillatory number (GON). Int. J. Comput. Fluid Dyn. 23:583–593, 2009.
Shojima, M., M. Oshima, K. Takagi, R. Torii, M. Hayakawa, K. Katada, A. Morita, and T. Kirino. Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamics study of 20 middle cerebral artery aneurysms. Stroke 35:2500–2505, 2004.
Sudo, K., M. Sumida, and R. Yamane. Secondary motion of fully developed oscillatory flow in a curved pipe. J. Fluid Mech. 237:189–208, 1992.
Sun, N., N. B. Wood, A. D. Hughes, S. A. M. Thom, and X. Y. Xu. Influence of pulsatile flow on LDL transport in the arterial wall. Ann. Biomed. Eng. 35:1782–1790, 2007.
Tada, S., and J. M. Tarbell. Oxygen mass transport in a compliant carotid bifurcation model. Ann. Biomed. Eng. 34:1389–1399, 2006.
Tateshima, S., K. Tanishita, H. Omura, J. Sayre, J. P. Villablanca, N. Martin, and F. Vinuela. Intra-aneurysmal hemodynamics in a large middle cerebral artery aneurysm with wall atherosclerosis. Surg. Neurol. 70:454–462, 2008.
Tateshima, S., K. Tanishita, and F. Vinuela. Hemodynamics and cerebrovascular disease. Surg. Neurol. 70:447–453, 2008.
Torii, R., M. Oshima, T. Kobayashi, K. Takagi, and T. E. Tezduyar. Influence of wall elasticity in patient-specific hemodynamic simulations. Comput. Fluids 36:160–168, 2007.
Ujiie, H., H. Tachibana, O. Hiramatsu, A. L. Hazel, T. Matsumoto, Y. Ogasawara, H. Nakajima, T. Hori, K. Takakura, and F. Kajiya. Effects of size and shape (aspect ratio) on the hemodynamics of saccular aneurysms: a possible index for surgical treatment of intracranial aneurysms. Neurosurgery 45:129–130, 1999.
Ujiie, H., Y. Tamano, K. Sasaki, and T. Hori. Is the aspect ratio a reliable index for predicting the rupture of a saccular aneurysm? Neurosurgery 48:495–503, 2001.
Wada, S., and T. Karino. Theoretical prediction of low-density lipoproteins concentration at the luminal surface of an artery with a multiple bend. Ann. Biomed. Eng. 30:778–791, 2002.
Weir, B. Unruptured intracranial aneurysms: a review. J. Neurosurg. 96:3–42, 2002.
Yamamoto, K., T. Sokabe, T. Matsumoto, K. Yoshimura, M. Shibata, N. Ohura, T. Fukuda, T. Sato, K. Sekine, S. Kato, M. Isshiki, T. Fujita, M. Kobayashi, K. Kawamura, H. Masuda, A. Kamiya, and J. Ando. Impaired flow-dependent control of vascular tone and remodeling in P2X4-deficient mice. Nat. Med. 12:133–137, 2006.
Yoshimoto, Y., T. Ochiai, and M. Nagai. Cerebral aneurysms unrelated to arterial bifurcations. Acta Neurochir. 138:958–964, 1996.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4